
An Architecture for Insider Misuse Threat Prediction in IT Systems

by

Georgios V. Magklaras

This dissertation is submitted to the University of Plymouth

In fulfilment of the award of

MASTER OF PHILOSOPHY

School of Computing, Communications and Electronics

Faculty of Technology

January 2005

 2

Abstract

An Architecture for Insider Misuse Threat Prediction

in IT Systems
Georgios Vasilios Magklaras BSc (Hons)

The ever increasing computerization of business processes and mission critical

applications, combined with the rising number of Internet technologies, has

created new security threats for computer systems and networks. Numerous

studies indicate that amongst the various types of security threats, the ones that

originate from legitimate user actions can have serious consequences for the

health of IT infrastructures. Although incidents of external origin are also

dangerous, the insider IT misuse problem is difficult to address for a number of

different reasons.

This thesis is concerned with the systematic study of the nature of Insider IT

misuse problems, as well as the development of experimental insider IT misuse

prediction techniques. The systematic study of legitimate user misuse actions is

necessary due to the composite and variable nature of Insider IT misuse.

The thesis contains the results of a small scale survey that highlighted many

important aspects of insider misuse actions. The results formed the basis for a

suitable Insider Misuse Threat Prediction Factor Taxonomy, the end product of

the systematic examination of the insider IT misuse phenomenon. The taxonomy

was then used to construct a systems architecture that facilitates legitimate user

threat prediction.

Although the proposed experimental architecture is far from the quality of a

production-level utility, it constitutes a novel Insider Threat Prediction Model,

which at the time of writing is unique in terms of its comprehensive design. It is

considered that the predictive techniques could be taken forward in future

research, in order to enhance the capability of existing Intrusion Detection

Systems and aid IT professionals to mitigate Insider threats effectively. Various

aspects of the proposed threat prediction model, the Insider IT misuse survey, as

well as the proposed Threat Prediction Taxonomy have been published in

conference proceedings and journals.

 3

ACKNOWLEDGEMENTS

Completing a research degree whilst having a demanding full time job was a great

challenge for me. This is the reason I am indebted to many people for their help as

I wrote the thesis and playing with my little private computing laboratory.

First and foremost, I would like to thank my supervisor Dr. Steven Furnell, not

only for his valuable editing and guidance role but also for encouraging me to

start and (most importantly) finish my research degree. I am also grateful to the

director of the Biotechnology Centre at the University of Oslo and current

employer, Professor Kjetil Tasken, for allowing me to use the institution‟s IT

infrastructure to conduct vital experiments. I should also not forget the

Biotechnology Centre scientists for happily participating into my experiments and

giving me permission to probe their user sessions.

My heartfelt thanks go also to Ida, who I admit I have neglected a lot, only in my

attempt to cope with the demands of the job and the degree at the same time. Her

calmness and patience reserves were always greater than my long hours of work

and I will never forget that.

Lastly, it is hard for me to overstate the help I got from my parents. They never

stopped re-assuring and helping me in every possible way they could, expecting

nothing in return. Thank you!

Oslo, September 2004

Georgios V. Magklaras

 4

AUTHOR’S DECLARATION

At no time during the registration for the degree of Master of Philosophy has the

author been registered for any other University award.

This study was financed with part funding from the Engineering and Physical

Sciences Research Council (EPSRC).

Relevant conferences and security events were attended during the course of the

research. In addition, several papers were prepared for publication in refereed

international journals and conferences, details of which are listed in the

appendices.

Signed……….

Date ……….

 5

CHAPTER 1

INTRODUCTION

In our modern age, many people are enjoying the benefits of Information Technology (IT). The

developed nations of the world are using Information Technology to transform the basis of their

business transactions. Business critical infrastructures utilise IT infrastructures, in order to realise

electronic commerce projects. E-commerce is currently one of the greatest ways to introduce a new and

scalable global economy model. On the other hand, a plethora of critical infrastructures such as the

telecommunications networks, air traffic control, energy and water distribution systems are also

strongly dependent on computing platforms. Hence, the security of Information Technology

infrastructures should be one of the most important considerations of system designers, operators and

managers.

However, the term „computer security‟ can be quite ambiguous and misleading, mainly because of its

wide context. Even experienced computing professionals give different extensions to the term

„Computer Security‟. The basic notion and the extensions are discussed in detail in latter chapters of

the thesis and they indicate the breadth of the different Information Security areas, as well as the extent

of the problem. In fact, a great majority of the IT infrastructure components exhibit security flaws that

render them susceptible to many forms of abuse. This is evident from a large number of Information

security related surveys during the last four years, such as [1]. These surveys indicated a sharp rise in

the number of security breaches that originated from external (i.e. unauthorised users) sources. The

threat of an external penetration (often referred to as „hacking‟) had been evident for years, but it

started receiving widespread attention, especially from the mass media. Proprietary information theft

from large enterprises, embarrassing web site defacements and devastating denial of service attacks

forced the IT industry to launch a variety of security tools that help users and system administrators

prevent, detect and -where possible- counteract IT abuse from external hackers. Computer anti-virus

toolkits, firewalls, cryptographic software, Intrusion Detection Systems (IDS) and IT security policy

shaping tools are the most common approaches followed by security experts today.

However the Information Security world has recently started becoming aware of another threat that had

more devastating consequences and was substantially more difficult to tackle. This time, the threat was

 6

not coming from external hackers, but from authorised users of IT systems. These users abuse their

privileged access rights by committing a series of unintentional or deliberate actions damaging

individuals or organisations in many different ways. The dissemination and storage of offensive

material through e-mail and the stealing of proprietary information for rival companies or organisations

are probably the most traditional cases of insider IT misuse known at the time of writing. Despite the

well documented and emerging insider threat, there is currently no substantial effort devoted to

addressing the problem of internal IT misuse. In fact, the great majority of misuse countermeasures

address forms of abuse originating from external factors (i.e. the perceived threat from hackers).

1.1 Aims and Objectives

This thesis aims to investigate innovative approaches of dealing with authorised users that abuse IT

systems. The overall aim is to advance the state of the art in the design and realisation of IDS by

providing mechanisms to predict the level of threat that originates from legitimate users. The work

results in the specification and evaluation of techniques that substantially extend the intrusion detection

capability for IT system and network administrators and provide a significant enhancement to the

overall security of IT systems. A number of specific objectives (of equal priority) apply:

Objective 1. To investigate the real nature and magnitude of the Insider IT Misuse problem by means

of reviewing relevant information security surveys and devise a bespoke survey, taking into

consideration the opinion of computing professionals.

Objective 2. To introduce a taxonomy of insider IT misuse incidents, in order to aid the process of

modelling insider threat.

Objective 3. To propose a preliminary Insider Threat Prediction Model, that will profile legitimate

users and estimate the level of threat for each individual legitimate user.

Objective 4. To derive an architectural framework for the development of a prototype Insider Threat

Prediction Tool (ITPT) system, for building the proposed Insider Threat Prediction Model on a real

world Operating System and test it against a number of selected Insider IT misuse scenarios.

 7

1.2 Thesis Structure

Prior to examining the previously mentioned issues, it is essential that the reader becomes familiar with

the latest advances in the field of IDS. Hence, the second chapter of this thesis examines in detail the

notion of the term „computer security‟ and provides an up-to-date overview of the currently employed

IDS techniques. Special emphasis is given to considering the benefits as well as the weaknesses of each

method and the mentioning of architectural frameworks whose contribution has advanced the field of

Intrusion Detection research.

The discussion then moves to determine the magnitude of the Insider IT misuse problem (chapter

three), a step that further refines the definition of the research problem domain. Some important field

terminology is introduced, followed by an analysis of recent Information Security surveys, in order to

qualify and quantify the nature of the Insider IT misuse problem.

Chapter 4 presents the results of an „Insider IT misuse survey‟, one of the first systematic efforts to

query different organisations specifically about the problem domain of this thesis. The rationale behind

the design and distribution of the survey is explained and the derived conclusions direct the subsequent

research and development steps of the project.

After discussing the insights of the Insider IT misuse problem domain and its magnitude, chapter five

takes the research and development efforts one step further by introducing a comprehensive taxonomy

of Insider Misuse Prediction Factors. Classifying IT abuse that originates from legitimate users is a

vital step for systematising the research efforts in the area. In addition, the derived taxonomy lays the

foundations for the development of the Insider Threat Prediction Model (ITPM), a mechanism that

associates the likelihood of the occurrence of legitimate user IT abuse scenarios with certain system

events. Chapter six discusses in detail this association by presenting the derivation of a suitable Insider

Threat Prediction Model, which constitutes an additional novel area of this research. The selection of

legitimate user monitoring criteria in order to profile authorised IT infrastructure users will be justified.

The chosen criteria will then form the basis for a threat prediction function, a mechanism that

associates certain user attributes to the likelihood of abusing the IT infrastructure.

 8

Chapter seven integrates all the proposed techniques into an architectural framework that will realise

them. The functional blocks of the Insider Threat Prediction Tool are presented. A group of current

standards that will allow information exchange amongst the various system components is considered,

followed by a justification of implementation criteria that are necessary for the development of a

minimal pilot system for further experimentation.

The conclusions and limitations of the system are discussed in the eighth and final chapter of the thesis.

The chapter discusses the performance of the system on a small number of Insider Misuse scenarios

and concludes with recommendations for future work on a more rigorous system validation procedure,

as well as future methods that can enhance the accuracy of the insider threat prediction process.

The appendices provide a plethora of detailed references to relevant technology standards, experiments

as well as copies of publications associated with this research project.

 9

CHAPTER 2

COMPUTER SECURITY AND INTRUSION DETECTION

This chapter explores fundamental issues that relate to the operational principles of Intrusion Detection

Systems. These are important tools in the battle against computer security breaches and it should be

clear that the ultimate goal of this research project is to enhance their capability in detecting and

predicting threats that originate from authorised users. Hence, the first important step is to understand

the basic philosophy behind their design and implementation. An overview of the history of IDS

development is provided, followed by a critical evaluation of the major techniques used to intercept

security breaches and a reference to important architectural Intrusion Detection frameworks.

2.1 The notion of the term ‘Computer Security’

Prior examining an IDS as a computer security tool, it is useful to clarify the term „computer security‟.

It is impossible to include an exhaustive plain English definition of the term. On the other hand, what

we can say is that the wide context of the term divides its notion in two areas. The distinction between

these two areas is quite fundamental when it comes to research and development methodologies for

resolving computer security issues.

One area is related with formal methods that characterise security properties in a detailed and

structured manner. The level of description may also justify mathematically a set of metrics and form

security models that are provably correct. Bace and many other Information Security research scientists

[2] mention the „security triad‟ that places Information Security issues under three different headings:

Confidentiality is concerned with restricting access to information to only those users

authorised for accessing the information. For instance, a public web server might contain a

„members only‟ area. The information contained in this area is restricted to only certain users

and hence the server should provide the means for scrambling the information of the session

of authorised users, so information in transit (through data networks or local Operating

System processes) might not be viewed by unauthorised third parties. The application of

cryptographic algorithms is a commonly accepted practice for enforcing confidentiality.

Although cryptographic algorithms provide powerful means of preserving data confidentiality,

 10

they cannot themselves prevent the occurrence of other conditions such as information

alteration or deletion, as discussed in the following paragraphs.

Integrity is the requirement that information must be protected from intentional or accidental

alteration. Using the previous example, our public server should contain tools that prevent

malicious alterations of the web page content. As an example, nearly all operating systems

contain a filesystem mechanism that verifies all actions (create, delete or alter files) against a

particular user identity. This process is commonly referred to as „access control‟ and there are

several different mechanisms to achieve this goal, each with a varying degree of reliability. It

is outside the scope of this thesis to provide a detailed coverage of cryptographic and access

control algorithms. A concise overview of these issues is provided by Phoenix [3], as well as

Skevington and Hart [4].

Availability is the final element of the computer security triad and represents the requirement

to have an IT infrastructure with system resources that are able to continue to work under a

variety of scenarios. This means that authorised users of the IT infrastructure are able to

access resources when and where they need them. The replication of the data content as well

as the physical resources of an IT infrastructure for redundancy purposes are a good example

of availability related measures. For instance, the contents of the hard drive of a web server,

its network link or even the entire server might be replicated to counteract accidental (flood,

earthquake) or intentional (arson, theft, Denial of Service attack) damage.

In addition to the previously mentioned classic triad of secure system properties, someone should also

emphasize the property of accountability. A system is said to exhibit accountability properties if it is

capable of reliably associating a given activity to the party responsible for the initiation of this activity.

The term „reliably‟ refers mainly to the ability of the system to provide an unaltered record of these

associations and it has certainly a lot of common ground with the property of integrity. However,

collecting the right type and amount of accountability data on large IT infrastructures is a non-trivial

task that goes far beyond the task of maintaining their integrity [5].

 11

In theory, if an IT infrastructure satisfies all the previously mentioned requirements, it can be deemed

as a secure one. Moreover, a plethora of technologies try to satisfy one or more elements of the triad.

Internet and Intranet firewalls, for example, attempt to protect both the confidentiality and integrity of

important information. Zwicky, Cooper and Chapman [6] define a firewall system as a single network

traffic choke point, which prevents the security dangers of the Internet from spreading to your internal

network. Figure 2.1 illustrates a typical firewall application scenario.

EXTERNAL NET(untrusted)

INTERNAL NET (trusted)

System 1 System 2

laser printer

FIREWALL

 Figure 2.1: A basic network fire-walled from the Internet

The firewall host stands always between the non-trusted network (Internet) and the internal

internetwork. Its role is to prevent access of unauthorised individuals into the internal network. This is

possible by authenticating incoming and outgoing packets against the source, destination endpoint

address and port number (packet filtering firewalls). It is also possible to be more sophisticated and

grant access to network traffic by checking the payload and appearance sequence of each Protocol Data

Unit against a list of malicious payloads and sequences (stateful firewall). However, firewalls can

impose dramatic limitations on the performance of large networks, they are difficult to configure and

 12

they deal mostly with external threats. Their application is a preferred feature for network security but

not a panacea.

The other way to clarify the fuzzy term „computer security‟ is by considering a practitioner‟s approach

and formulate a generic, neat perception of the overall Computer Security domain. Garfinkel and

Spafford [7] adopt that kind of practical view and support the opinion that “a computer is secure if you

can depend on it and its software to behave as you expect.” This is a less formal definition of the term,

based mainly on „hands-on‟ experience of technical computing issues.

If someone poses the question of which definition should be adopted for the purposes of research and

development, the answer would point to the first and formal one. This is not to say that Garfinkel and

Spafford are on the wrong track. The earlier definition is more suitable for the formal research

environment because it provides more systematic and quantifiable security evaluation criteria.

Expected behaviour is not an objective criterion. Someone could argue the fact that there are different

expectations for the behaviour of a computer system between a software engineer and a line manager,

since each of them might have a different list of desirable features (the manager might disagree with

the software engineer and favour confidentiality over availability). This level of ambiguity can confuse

the security evaluation process and it will certainly always require additional and more formal

clarifications about what is considered as expected behaviour for the system.

Whatever the definition, there is one universal truth about computing infrastructures. They always

exhibit important design flaws that render them susceptible to many different kinds of security

breaches. Denning‟s seminal work on IDS [8] points out that despite the widespread deployment of

cryptographic, authentication and firewalling technologies, weaknesses that reside in software

applications, Operating Systems and the level of knowledge of technical staff will always open the

door to malicious abuse of computing systems. Hence, if it is not possible to prevent the occurrence of

these events, it would be at least useful to know when, how and from where these malicious acts

originate. The tools that arm the IT specialist with information to adequately answer the previously

mentioned questions are collectively called „Intrusion Detection Systems‟ (IDS). The remaining

chapter sections examine their history and principles of development.

 13

2.2 The birth of the Intrusion Detection System

The concept of Intrusion Detection evolved from the notion of automated audit trail processing by

Anderson [9]. The basic idea behind an audit trail is the careful selection of indicators that reveal

important events about the status of a computing system or the actions that bring the system to a

particular state. Each indicator is called an „audit probe‟ and is usually selected by the security

administrators that look after the computing platform. Figure 2.2 below illustrates the concept.

 Figure 2.2: The principle of audit log generation

The „Monitored System‟ has a set of active audit probes, shown as rings. These probes communicate

with a software audit process. The software process then updates a file, which essentially is an archive

of all the events intercepted by the probes. Information is usually stored by using the ASCII or

UNICODE character set, although exceptions do exist and create audit archives in proprietary binary

forms.

The generation of audit logs was (and still is) an important requirement for the security of computing

platforms. In 1987, the American National Computer Security Centre published the “Guide to

Understanding Audit in Trusted Systems” document [10]. The document tried to interpret the complex

audit requirements of the famous United States Department of Defence „Orange book‟ [11]. Amongst

other things, it made clear that every Operating System should provide audit-logging facilities. In fact,

the security compliance level of an Operating System was directly proportional to the wealth and

reliability of its audit probes. Hence, it suggested the primary technical and administrative goals of an

Operating System audit mechanism, as well as a list of preferred auditable events.

 Monitored System

Audit

Logs

 Audit

 process

Audit Probes

 14

A traditional example of an audit log generation process is the „syslogd‟, the standard error logging

process employed by many UNIX-like Operating Systems, originally written by Eric Allman at the

University of Berkeley. Garfinkel and Spafford [7] provide more details about the setup and utilisation

of this logging utility. However, we provide a small snapshot [Figure 2.3] of what a syslog audit file

looks under the LINUX operating system. Amongst various recorded events, there are important

indications (bolded) that someone has repeatedly tried to gain unauthorised access to the server.

Feb 16 19:25:15 archimedes kernel: parport0: PC-style at 0x378 [PCSPP,TRISTATE] Feb 16 19:25:15 archimedes

kernel: lp0: using parport0 (polling).

Feb 16 19:25:15 archimedes lpd: lpd startup succeeded

Feb 16 19:25:16 archimedes gpm: gpm startup succeeded

Feb 16 19:25:16 archimedes crond: crond startup succeeded

Feb 16 19:25:18 archimedes xfs: xfs startup succeeded

Feb 16 19:25:18 archimedes xfs: listening on port 7100

Feb 16 19:43:49 archimedes login(pam_unix)[1186]: authentication failure; logname= uid=0 euid=0 tty=pts/2 ruser=
rhost=192.101.101.103 user=gmagklas
Feb 16 19:25:18 archimedes anacron: anacron startup succeeded

Feb 16 19:25:26 archimedes login(pam_unix)[870]: session opened for user gmagklas by (uid=0)

Feb 16 19:25:27 archimedes login[1186]: FAILED LOGIN 1 FROM 192.101.101.103 FOR gmagklas, Authentication
failure
Feb 16 19:25:27 archimedes login(pam_unix)[870]: session opened for user gmagklas by (uid=0)
Feb 16 19:25:28 archimedes -- gmagklas[870]: LOGIN ON pts/0 BY gmagklas FROM 192.101.101.103
Feb 16 19:25:48 archimedes su(pam_unix)[954]: session opened for user root by gmagklas(uid=500)
Feb 16 19:43:59 archimedes login[1186]: FAILED LOGIN 2 FROM 192.101.101.103 FOR gmagklas, Authentication
failure
Feb 16 19:44:06 archimedes login[1186]: FAILED LOGIN 3 FROM 192.101.101.103 FOR gmagklas, Authentication
failure
Feb 16 19:44:18 archimedes login(pam_unix)[1186]: service(login) ignoring max retries; 4 > 3
Feb 16 19:45:43 archimedes su(pam_unix)[954]: session closed for user root
Feb 16 19:45:48 archimedes su(pam_unix)[1191]: session opened for user root by gmagklas(uid=500)

Figure 2.3: Snapshot of a ‘syslogd’ generated log

The important point to consider here is that the entries that indicate attempts to breach system security

(indicated in bold letters) are very few when compared to the overall number of audit record entries

(one per line). In the early days, the security administrator would have to manually parse each audit

record individually, decide what was relevant, discard the rest and take appropriate actions. Large

mainframe systems (with thousand of users and many complex applications) with a notable number of

audit probes would generate several thousands of audit records on a daily basis, making the manual

process of extracting relevant information extremely tedious.

Anderson [9] published the „Reference Monitor‟ concept in a project funded by the United States Air

Force to address the problem of filtering important information out of enormous log files. The

Reference Monitor was a mechanism that eliminated automatically redundant or irrelevant records

from security audit trails. This is formally called „audit reduction‟. Its application had a profound

 15

impact on computer audit mechanisms and was a tool that substantially reduced the load burden and

increased the efficiency of security administrators.

The automatic audit record processing had set the foundations for the IDS concept and in 1985, a

research group founded by the United States Navy Command created the „Automated Audit Analysis‟

system [12]. The prototype utilised data collected from the shell environment of a UNIX Operating

System. The data was then analysed by using Relational Database Management tools and the research

pioneered a way to distinguish normal from irregular system usage.

The study of irregular system usage was the subject of another United States Navy Research team.

From 1984 to 1986, Dorothy Denning and Peter Neumann were the first to introduce the term Intrusion

Detection. They researched and developed a model that proposed a correlation between unusual

activity and misuse. Their project was eventually named „the Intrusion Detection Expert System

(IDES)‟ and formed the basis for the seminal „Intrusion Detection Model‟ [8] paper, published in 1987

by Dorothy Denning. Teresa Lunt (of the „Automated Audit Analysis‟ project) joined the previously

mentioned pioneers and continued working on the IDES architectural framework. A prototype system

was developed in a proprietary TOPS-20 computing platform. The work was finalised in the early

nineties and the first results were published during the Sixth Annual Computer Security Applications

Conference in Tucson [13].

The influence that the IDES project had on the computer security research world was phenomenal. The

results created interest amongst various research teams around the globe and launched a large number

of relevant projects. It was clear that the IDS concept was becoming very promising and the next

section will examine in detail their principles of operation as well as their most important architectural

frameworks.

2.3 The anatomy of an Intrusion Detection System

Computer Intrusion Detection Systems provide search functions, as well as the functionality to alert the

responsible parties when activities of interest occur. As a consequence, the term IDS and the notion of

the word intrusion are going to be used throughout this thesis only with reference to the „Information

 16

Technology (IT) infrastructure‟. The latter term refers to an organisation‟s set of discrete computer

systems (dedicated servers, client workstations) and the telecommunications components that

interconnect them, in order to perform a useful task.

In simple terms, Intrusion Detection is a vital technology component of a modern security management

system. Its basic task is not only to prevent and (where possible) respond to a plethora of computer

security incidents, but also to integrate the operation of other security components (anti-virus, firewall

and cryptographic applications) into one all-rounded system. An IDS is a tool that monitors the events

occurring in a computer system, searching for indications of security related problems.

However, a fundamental step in understanding the concepts behind Intrusion Detection is to clarify the

term „intrusion‟. One of the most compact but yet descriptive definitions is given by Amoroso [14]. He

defines an intrusion as “a sequence of related actions by a malicious adversary that results in the

occurrence of unauthorised security threats to a target computing or networking domain”.

Consequently, he defines Intrusion Detection as “…the process of identifying and responding to

malicious activity targeted at computing and networking resources”.

Amoroso emphasises the term „process‟, stating that it is a critical property of Intrusion Detection. This

property involves a certain level of interaction between the technological tools that perform the actual

detection and the people that administer or trigger them. It is this interaction that presents great

challenges to the IDS administrator and constitutes a problem for Insider Misuse, as explained in later

chapters. Amoroso also elaborates on the term „malicious activities‟ by referring to security-relevant

actions that are intentional. Although it could be argued that most external security breaches are

intentional, the balance between accidental and intentional security breaches becomes unclear when

someone considers threats from legitimate users, as discussed in the third chapter of the thesis.

The definition of what is considered as malicious or intrusive activity is also environment specific. For

example, certain organisations such as government departments would consider as intrusive any

activity that would result in unauthorised disclosure of sensitive information. On the other hand, the

 17

unauthorised alteration of the contents of a web server might be the major concern for other

establishments, such as news agencies and political parties.

Figure 2.4: The functional blocks of a basic IDS

Based on the previously mentioned principles, figure 2.4 depicts the functional blocks of a typical IDS.

The sensors constitute modules for collecting a predefined set of events from monitored systems.

Repeated unsuccessful login attempts, modification or access of certain system files are some of the

most typical examples of collected events.

The event logs are forwarded through the data networking infrastructure to a dedicated computer host

that runs the IDS software (IDS host). The interpreted observations are stored into one or many file

buffers that constitute the log archive of the IDS host. The knowledge base file buffer is a collection of

useful information about what constitutes intrusive activity. This type of information might be

predefined by a system specialist or intelligently inferred by the IDS itself, depending on what type of

intrusion algorithms are employed. An important research issue in IDS knowledge bases involves the

development of efficient and commonly accepted ways for encoding intrusion attack information [15].

At the heart of the system lies the „analysis engine‟ that is responsible for running the Intrusion

Detection algorithms. Whilst section 2.4 will contribute the necessary descriptions of various Intrusion

Detection processing schemes, it is worth mentioning that the primary goal of these schemes is the

identification of key intrusion evidence and the decision making about the initiation of certain types of

responses.

Monitored

System

IDS sensors

 IDS

IDS HOST

Analysis

 Engine

 GUI

 module

Intrusion

Knowledge

IDS

Observations

Data

Network

 18

Although automated responses represent notable IDS design trends [16], extreme caution is needed, in

order to minimise the risk of the automated response being used as a vehicle for attack. A

knowledgeable malicious intruder that has compromised a user account knows that he/she will

probably be detected. If the hacker knows that the IDS might disable someone‟s account, he/she can

launch a Denial of Service (DoS) attack. This can impact the management of the IT infrastructure,

because it will certainly require manual intervention to restore the affected user account(s) and systems.

Interested readers should refer to Chapter 12 of Bace [2], which presents evidence of the occurrence of

real world cases where an automated response was exploited by malicious intruders. The issue of IDS

response is also a major research and development issue on its own.

Finally, all the previously mentioned components are co-ordinated by means of a Management System

that provides an intuitive Graphical User Interface (GUI). This is necessary, in order to provide an

interface to the human operator. A key issue in IDS GUI design is the careful definition of what type of

information should be displayed. Currently, there is no substantial experience for determining a

commonly accepted way of displaying intrusion related information as mentioned in pages 27-28 of

Amoroso [14].

Before the presentation of major IDS algorithms, it is good time to emphasise two important aspects of

an IT intrusion. One of them concerns the temporal nature of computer intrusions. Earlier paragraphs

stated that intrusions are sequences of related (i.e. intrusion-relevant) actions. This constitutes the basis

for constructing a temporal model of computer intrusions, as indicated by part A of Figure 2.5. Time is

indeed an important element in intrusion detection. An intruder usually begins with some initial action

as the first element of the time sequence. This early step usually corresponds to an attempt to breach a

security feature of the target computing system. Several intermediate actions might be logged and

usually the final one indicates either a successful or flawed attempt to bypass the defence mechanisms

of the system. In the event of the attempts being successful, a „security effect‟ has taken place,

indicating the violation of an anti-intrusion mechanism of the system. Subsequent actions might then

follow that could potentially result on the occurrence of additional security effects.

 19

However, part A of Figure 2.5 presents a rather simplistic view of the Intrusion Detection System

problem. In practice, the hardest problem is differentiating between actions that are relevant to

intrusive activities and actions that have nothing to do with attempts to bypass the security mechanisms

of a system. Figure 2.3 demonstrated the problem by providing a plethora of audit records. A small

number of them were relevant indicating unsuccessful TELNET attempts to the server. The TELNET

attempts occurred at irregular time intervals. The rest of the audit record entries are irrelevant and

present a special kind of „noise‟ to the Intrusion Detection process. Hence, a more realistic intrusion

temporal model is given in part B of Figure 2.5.

 Time

 Initial Action Next action Next action …… Security effect

Part A

 Time

 Initial Action Next action Next action …… Security effect

 (irrelevant) (irrelevant) (relevant) (relevant)

 Initial action Next action Security effect

 Intruder B Intruder B Intruder B

 (relevant) (irrelevant) (relevant)

Part B

Figure 2.5: Temporal modeling of computer intrusions

Part B also displays actions related to more than one intrusive action. Most Intrusion Detection

Systems examine each one of them separately by the establishment of „intrusion sessions‟. Each

session contains a list of targeted resources (hosts, applications, authentication mechanisms) associated

 20

to a list of attack origins that usually include other hosts and potential user identities. The establishment

of these lists represents another important issue in the Intrusion Detection process, that of

accountability, as earlier discussions point out.

Accountability or „event traceability‟ mechanisms present one of the greatest challenges of Intrusion

Detection Systems research. It is not always possible to trace back the point of origin of certain attacks.

Many factors can be considered that make it possible to complicate or even hide identity in computing

infrastructures. The inherent insecurity of the TCP/IP protocol (alteration of source IP address – IP

spoofing), the use of cryptographic protocols to scramble the content of IP packets and the inadequate

configuration of network devices (routers and firewalls) are some of the most important techniques that

can be exploited by potential intruders. It is outside the scope of this thesis to analyse all the potential

ways of achieving this goal. However, the reader can refer to Staniford and Heberlein [17] for a

detailed reference of the previously mentioned issues.

2.4 Principles of Intrusion Detection techniques and architectures

Having discussed the basic elements of an Intrusion Detection System, this section relates to the

techniques that perform the actual Intrusion Detection process. For each technique, we discuss the

relative advantages and disadvantages and important architectural frameworks that employ them, in

order to promote the research and development efforts of the Intrusion Detection field.

The reader will find many examples of relevant literature dividing Intrusion Detection Systems into

host and network-based ones. A host-based IDS performs all the necessary computations by

considering data that are sampled from the operating system and the applications that run on top of it.

On the other hand, a network-based IDS considers sensor data that originate from the infrastructure

that interconnects computer devices. Hence, a fundamental difference between the two is that the

earlier might utilise data networks to disseminate information amongst the various IDS components,

whereas the later seeks intrusive activity inside the core of a data network.

A Protocol Data Unit (PDU) is the fundamental building block for data network based communications

and the fundamental source of information for a network based IDS. Figure 2.6 depicts a simplified

 21

HEADER

Source:192.168.2.1

Dest :192.168.2.2

 PAYLOAD

Gmagklas:x:500:500:/bin/bash

view of an Internet Protocol PDU that carries part of a UNIX /etc/passwd file from host 192.168.2.1 to

host 192.168.2.2. No matter what the underlying network protocol might be, a PDU will always

contain a header and a payload area. The header usually provides pointers to the origin and destination

of the PDU, whereas the payload area encapsulates the actual information carried by it. A network-

based IDS will contain special mechanisms to intercept protocol data units and copy certain parts of

their header and payload areas to a memory buffer for further inspection and processing. A well-known

architectural example of a network-based IDS product is the Network Flight Recorder [18], invented in

1997 by Marcus Ranum and other researchers.

Figure 2.6: A Protocol Data Unit (PDU)

The two previously described IDS categories are not mutually exclusive. In fact, if someone considers

the widespread usage of computer networks, it will become clear that the combination of host and

network-based intrusion detection is a necessary strategy for devising an effective IDS. As a result, the

border between network and host-based Intrusion Detection is currently more vague than ever, with

most research frameworks and commercial products seamlessly integrating these two methods into one

single system.

However, there are two issues that will affect the future of network-based intrusion detection. The

increasing speed of Local and Wide Area (LAN/WAN) network technologies creates a scalability

issue. Today, many LAN topologies operate on a speed of 100 Mbps, dictated by the IEEE 802.3u Fast

Ethernet technology. Let us assume that a network based IDS is set up to intercept packets, listening to

all LAN segments. If someone considers an average size of an Ethernet based frame of 800 bytes and

assuming that the network operates at three quarters of its maximum capacity (75 Mbps), there will be

on average nearly 12000 PDUs that hit each of its network interfaces every second. Extracting

information from each one of the intercepted PDUs and performing the necessary computations to

update operational values will induce a serious processing load for the CPU of the IDS. With LAN

 22

backbone speeds of 1 Gigabit per second and over, the performance of sophisticated packet inspection

engines will be under question, when it comes to rapid response times.

The second threat to network intrusion detection is the widespread deployment of cryptographic

technologies that encrypt the payload area (and possibly the header) of a PDU. In an alarming article

that comments on several aspects of network security, Bruce Schneier [19] describes how IPsec can

degrade the effectiveness of a network-based IDS. Although it is true that encrypting network traffic

can only complicate things when it comes to the interception of intrusive activities, the use of

encryption to defend the privacy and integrity of messages is also necessary. Hence, an important task

for a network designer or security architect is to find the right balance between encrypted and plaintext

traffic, by identifying the network points that should utilise encryption and where traffic could be

unencrypted for the purposes of efficiency and monitoring.

At the time of writing, there are many different Intrusion Detection algorithms under development.

Moreover, it does not matter where the algorithms are applied at network or host level. Although the

sensor probe technology is different between network and host based Intrusion Detection, the

principles of computations are the same and all techniques can be categorised in two major schools of

thought. „Anomaly detection‟ is one major category of Intrusion Detection techniques, which

intercepts intrusive activities by analysing statistical profiles of user behaviour over time. These

profiles could also be used to monitor the behaviour of automated system processes that execute

programs by means of a specific user identity. The second major method of Intrusion Detection tends

to analyse intrusive events that are described in terms of rules and pattern descriptors. This technique is

called „misuse detection‟. These techniques will now be considered in the subsections that follow.

2.4.1 Identifying intrusive activity by using anomaly detection

Anomaly detection was one of the earliest approaches employed in Intrusion Detection architectural

frameworks. In 1986, Denning‟s Intrusion Detection Model [8] emphasised a very important

observation. An intrusive activity often manifests itself as an unusual (i.e. abnormal) event that could

be spotted by using a variety of statistical methods. This means that for a specific system and operation,

it is possible to establish a profile of normal activity. This is done by carefully defining a set of metrics

 23

that are indicative of intrusive activity and then perform a series of statistical calculations, in order to

infer whether a user (or process) has irregular and hence suspicious behaviour.

Each metric is assigned a variable. The key notion of a mathematical variable is that it can be

associated with a distinct value from a well-defined domain. In this particular case, certain variables

might represent the amount of network connections of a user, the CPU usage, failed login attempts and

many other intrusion related criteria, at a particular point in time. These values are usually cumulative

(they are stored in arrays) and are regularly sampled over a pre-defined time interval. This interval can

be fixed in time (set to zero at a particular hour of the day) or function over a sliding time window.

When an adequate number of samples has been collected, the values are fed to a statistical function.

The arithmetic mean and the standard deviation (sd) functions are some of the simplest examples,

whereas Markov chains and other types of stochastic processes might be included. The end result is the

production of a set of permissible values (thresholds) for every variable that represents a metric. If the

value of the variable is outside the pre-defined range, a threshold alarm will be triggered and the

system will classify the event (or series of events) that produced that value as intrusive. A good

example of a commonly used threshold is the number of permissible unsuccessful login attempts to a

system, as previously demonstrated in Figure 2.3.

For every metric: sample set[n]=getval(n, probe);

 Metric value= sd(sample set[n]);

 Result = Compare (Metric value, Metric Threshold);

 If (result==true) {log(“Normal result”); exit();} else

 {log(“Abnormal result”); response(metric); exit();}

Figure 2.7: The principle of an anomaly detection algorithm

Hence, a generic procedural pseudo algorithm for a very simplistic anomaly detection system is

illustrated above (Figure 2.7). A „sample set‟ is a group of collected intrusion metric values. These

values are usually stored in contiguous areas of memory cells and they are then fed to the anomaly

detection based function that evaluates the mean and standard deviation. The sample size and hence the

size of the array is indicated by an integer n. The calculated values will then be compared against a set

of carefully chosen thresholds for each metric by the „compare‟ function. The function returns true if

there is no substantial level of variance between the thresholds and the derived values and false

 24

otherwise. In the later case, an anomaly has been detected and that will usually force the system to

respond according to a pre-defined procedure associated with each metric.

The previously mentioned algorithm is the same in principle for a wide variety of monitoring

situations. It could be applied to building a profile of normal system or network operations. A subtle

point in the anomaly detection process is the selection of suitable threshold values to distinguish

between anomalous and normal activity. Certain users, applications or network traffic trends will

change over time. If the IDS designer does not compensate for this feature, there will be false positive

or negative alarms that reduce the accuracy of the anomaly detection process. A number of techniques

intended to refine the threshold values are discussed in the following paragraphs.

Time series analysis was proposed by Denning [8], in order to dynamically adapt statistical profiles

that change over time and may be abused by an attacker to gradually train the profile and thereby avoid

the mechanisms of anomaly detection. The time series takes into account the order and inter-arrival

times of the observations, making use of the temporary model of an intrusion as stated in earlier

sections. An observation is abnormal if the probability of occurring at a specified time interval is too

low or too high. This analysis model has produced accurate detection results. Its main disadvantage is

that it requires vast amounts of computational resources (CPU and memory) and thus it does not scale.

The beginning of the nineties decade saw an explosive growth of the statistical anomaly detection

research efforts. Predictive pattern generation [20] is another interesting anomaly detection technique

that utilises the axioms of conditional probability, in order to predict future scenarios based on the

events that have already occurred. It is highly adaptive to profile changes and uses a dynamic set of

rules for detecting intrusions. The rules are not static. Instead, they are inductively generated based on

the sequential relationships and temporal properties of the observed events. The identification of

regular patterns of events allows the prediction generation algorithm to infer that some specified event

types are more likely to occur next in the series of events than others. The algorithm assigns a

probability to each most likely event. It then refines the assigned probabilities by inductively

generating rules in the following form: Consider an input sequence of events E1,…Ek. Then the

rule for that specific sequence of events is: - (Ek+1,P(Ek+1)),…,(En,P(En)) . The rule expression

 25

could be interpreted in plain English: “Assuming that the input stream contains the event sequence

E1,…Ek , the events Ek+1,…, En are the more likely to be seen in the rest of the input sequence, with

corresponding probabilities of P(Ek+1),…,P(En).”[20]

Predictive pattern generation has the advantage of focusing on a few relevant security events rather

than the entire monitored session and can therefore be efficient in terms of computational resources. In

addition, it has good tolerance to intentional training by malicious intruders who are trying to avoid

detection. However, it has one major drawback. Its effectiveness is totally dependent on training the

system by using well thought scenarios of abnormal activity and usually requires expert knowledge. If

the inductively generated rules are not comprehensive enough to cover all possible abnormal events,

certain events will be not flagged as intrusive (i.e. false negatives). A partial solution to this is to

implicitly characterise every unknown event as anomalous, which has also the potential of introducing

false positive alarms.

In 1995, Kumar [21] introduced Neural Networks as one of the latest strategies to aid in statistical

profile adaptation. The basic idea is the training of the neural network on a set of representative user,

application or network traffic characteristics that can certainly indicate abnormal activity. After the

initial training period, the neural network receives activity data and determines to what extent the

sampled activities exhibit similarities with the training samples. Abnormal data yields a notable change

in the state of neural units, connections, or weights, flagging anomalous activity. However, the level of

profile adaptation on a neural net is substantially greater than the time series equivalent methods.

Furthermore, a neural network has a relatively low impact on computational resources because it does

not make prior assumptions on the expected statistical distribution of measures. It is more flexible than

the rest of anomaly detection measures, because it does not employ a fixed set of metrics. However,

this flexibility has a cost when it comes to detecting faults in their training. When a neural network

detects an anomalous event, it will adapt its notion of normality by initiating a series of stepwise

weight corrections. Tracing the reason for a detected anomaly through stepwise weight correction can

be almost impossible. For this reason, the current state of the art in anomaly detection does not consider

neural networks as a pure statistical detection method but simply as a valuable complement.

 26

Finally, the latest anomaly detection technique inspired from the Artificial Intelligence computing field

was presented in 1998 by Ludovic Me [22] and utilises evolutionary computing algorithms to

perform the analysis of the collected data. The devised system „GASSATA‟ defines hypothesis vectors

from event data. The vectors either indicate an intrusion or not, making an initial hypothesis. They are

then fed to a binary encoding function that represents them as series of binary digits (bits). A „fitness

function‟ accepts the binary coded vectors, randomly mutates selected bits and tests the validity of the

newly produced individuals against a set of criteria, until an optimal hypothesis is devised. The results

of this method are encouraging. The authors reported that the mean probability of true positives was

0.996, for analysing 200 user attacks in ten minutes and twenty five seconds. Clearly, there is going to

be a lot of overlap between the fields of Intrusion Detection and Evolutionary Computation.

2.4.2 Identifying intrusive activity by misuse detection

The second major school of thought in Intrusion Detection tries to intercept intrusive activities by

comparing audit probe data to a repository of attack descriptions or „signatures‟. These signatures

conform to a scheme that enforces a well-defined byte sequence describing intrusive activities. They

normally reside on a plain file. The file is then consulted by an IDS on startup and constitutes its attack

knowledge repository. The most common example of a misuse detection system that is employed

widely in the commercial world is that of a computer anti-virus application [23]. Nearly all

commercially employed anti-virus software packages use virus description files. These are carefully

devised byte sequences that describe unique characteristics of malicious code in a bespoke (often

proprietary) description language.

The major difference of this method with respect to anomaly detection is that intrusion knowledge is

not made of threshold values produced by statistical calculations. Instead, the search activity is

governed to a large extent by a direct comparison of the byte sequences of the signature file and those

derived by the IDS sensors. As a result, misuse detection is more static than statistical based

approaches and there is no efficient way of dynamically refining a misuse detection signature.

 27

There are anti-virus packages that are able to intercept malicious code that has not been identified

before. However, this is still based on pattern matching heuristic algorithms that are designed to

intercept common actions during the execution of malicious code. An example is an executable

program that tries to insert itself at the beginning or the end of certain files [23]. These techniques are

an important feature that broadens the horizons of a misuse detection system, but they can miss features

that have not been characterised as common actions of malicious code. This is the reason that all anti-

virus vendors suggest frequent updates of the virus description files. Consequently, today there is not a

known misuse detection method that can successfully detect an entirely new method of IT intrusion.

One can only improve them to be effective against variations of existing attack methods or keep

updating the attack signature repository, so that new threats can be addressed.

It is also important to note that misuse detection signatures might be characterized as „atomic‟ or

„composite‟, depending on whether they describe aspects of a single event or they tend to codify

characteristics that are spread across many events. An example of an atomic signature is one that

detects a badly formed PDU, such as one used in the „land‟ network attack [6]. This might cause the

victim‟s machine to crash on the reception of the packet. On the other hand, a signature that describes a

port-scanning incident is considered a composite one, simply because the monitoring aspects need to

maintain information that concerns many different types of packets, at different time intervals.

The invention of a suitable structure for storing signatures in a standardised and efficient way is an

important issue in the research and development of misuse detection oriented algorithms. Efficiency is

all about describing events in a compact (memory and algorithmic complexity) but yet unambiguous

way. It also enables misuse detection systems to perform „on-the-fly processing‟, where the IDS is

able to initiate response activities in a more timely fashion, instead of doing „after-the-event‟ analysis

of audit records in batch mode. In contrast, anomaly detection is unable to perform these functions,

mainly due to its computational complexity.

Standardisation is also a desired property of an attack description structure, because it can provide a

quick way of disseminating attack descriptions amongst different IDS vendors and promote a fast

 28

response to attacks. Unfortunately, most commercial IDS vendors keep their systems proprietary and

normally attack descriptions from one vendor cannot be utilised by the products of another one.

One way of structuring the storage of attack signatures is a „production’ or „expert system’. Expert

systems consist of a knowledge base containing descriptions of suspicious behaviour. The description

is based on rules that format the sampled data and perform an if-then style comparison, associating

collected data with predefined knowledge. The „if‟ part of the rule describes a matching condition that

is formally defined by the methods discussed in the following paragraphs of this section.

One heavily utilised signature description structure can be produced by pattern matching engines. In

the great majority of the cases, a pattern matching engine will apply a string matching algorithm. A

string is a sequence of characters represented by either an ASCII or UNICODE character set. In the

classic pattern matching problem on strings, an algorithm is given a text string T of length n and a

pattern string P of length m. The algorithm aims to find whether P is a sub-string of T. If this is the

case, it can be said that T contains P and that establishes the notion of a match. More formally, it can be

proved that there is a substring of T starting at some index l that matches P on a character by character

basis, so that T[l]=P[0], T[l+1]=P[1], …,T[l+m-1]=P[m-1]. It is outside the scope of this thesis to

provide an exhaustive discussion of pattern matching algorithms. The reader is therefore urged to

consult Goodrich and Tamassia‟s [24] practical overview of pattern matching algorithms for further

details.

State transition analysis [25] is also a popular approach for representing and detecting known

penetration scenarios. A penetration is modelled as a sequence of actions performed by an attacker

indicating a clear path from the initial state to a target compromised state. An extension of this method

that provides advanced correlation of intrusion signatures to infer intrusive activity is a „coloured

Petri-net‟[26]. This method represents intrusion states by using coloured tokens. The colour of the

token in each state serves to model the context of an event. The signature matching is driven by the

parsing of audit trails and is formed by moving tokens progressively from initial states to the final state

that indicates a compromised system.

 29

Figure 2.8: A colour Petri Net Automaton [26]

In order to further explain the application of Colour Petri Nets to misuse-detection orientated Intrusion

Detection, figure 2.8 above illustrates a Colour Petri-net Automaton (CPA) that represents an intrusion

signature. The system states (s1-s7) are represented with circles, whereas the directed arrows indicate

the state transitions (t1-t7). In this particular example, an attacker is trying to invent a way of

bypassing the authentication mechanism of a UNIX-based host and obtain System Administrator

program execution privileges. The CPA-based attack signature dictates that the intruder should first

insert a binary into the mail spool of the Super User (root) account. Then, the intruder will try to force

the super user to execute it by means of checking his e-mail (s7). At this point, the system has been

successfully compromised.

The primary advantage of CPA-based intrusion signatures is that they provide a very systematic way of

defining detailed pre and post conditions for the matching of certain events that might indicate an

intrusion. This creates not only a more refined-way of creating intrusion signatures, but it also

introduces some variability on the attack signature, so that certain variations of an attack scenario can

be encoded. This property addresses the inefficiency of detecting attack variants but it still cannot

 30

address the greatest weakness of a misuse detection mechanism: its ability to detect a totally new

method of intrusion [26].

2.5 Anomaly versus misuse detection and the birth of hybrid IDS frameworks

During the very early stages of IDS development, the community of researchers was always arguing

about the optimum suitability of either anomaly or misuse detection for specific problem domains.

Adopters of misuse detection were presenting their case by emphasising the computational

effectiveness of pattern matching algorithms and its ability to offer fast detection results.

In contrast, the supporters of anomaly detection were focusing on the inability of misuse detection to

detect attacks that have not been described in signature databases or intrusive activities that could

bypass misuse detection by introducing minor differences in the execution of an attack. This is

certainly one of the greatest disadvantages of misuse detection methods, since intrusion methodologies

evolve all the time and produce new methods for attacking computer system infrastructures.

In a paper that describes several weaknesses of Network Intrusion Detection methods, Ptacek and

Newsham of Secure Networks [27] describe in detail a method of camouflaging suspicious network

traffic, in order to avoid detection from a network-based misuse detection engine. Figure 2.6 illustrated

how information is encapsulated into the payload section of a Protocol Data Unit (PDU). Suppose that

the string “/etc/shadow” indicating some sort of manipulation of a UNIX system password file was

inserted into the payload area of the packet. All network-based IDS would intercept that string and flag

an alarm, as a result of a rule that instructs them to match this particular string (or certain variations of

it). However, the clever attacker inserts some characters into the string, so that each letter of the string

is followed by a specific character. For instance, if that character was X, then the string would become:

“/XeXtXcXsXhXaXdXoXwX” and would be an adequate measure to confuse the Network IDS engine.

From a philosophical point of view, neither of these methods is ideal for a range of scenarios. The

„one-size-fits-all‟ rule was never successful in the IT industry and that is certainly the case with

Intrusion Detection Systems. An IDS should be a tool that addresses a plethora of different scenarios.

 31

Whether the problem domain is related to detecting well- known attacks or suspicious behaviour, an

IDS should be able to integrate a variety of different algorithms to address an ever increasing range of

IT security issues. All previously referenced methods document a large number of failures under

different conditions. These failures appear to be as false positive alarms, when the IDS flags a non-

intrusive event as intrusive. The opposite (false negative) situation is equally undesirable, because a

truly intrusive activity will be flagged as normal and consequently will go unnoticed.

As a result, IDS research and development started focusing on architectural frameworks rather than

algorithmic investigations. An IDS Framework (IDSF) is essentially a holistic and abstract

architectural specification. Amongst other things, this shift in IDSF research and development efforts

introduced the effective combination of misuse and anomaly detection techniques for reducing the

number of false positive/negative alarms and improving the reliability of Intrusion Detection Systems.

They also focus on system-wide implementation issues, as the abstract properties allow the architecture

to function with more than one IDS technique, Operating System or hardware platform, enhancing the

interoperability of the architecture.

„Haystack‟ [28] was one of the earliest examples of IDSF frameworks. It was developed by Tracor

Applied Sciences and Haystack Laboratories for the United States Air Force and employed a two part

statistical anomaly detection procedure. The first part was sampling aspects of a user session and tried

to determine the degree to which the session resembles an established intrusion type. The later stage

was complementing the results of the first one by detecting deviations in a user‟s session activities

from the normal user profile.

Denning and Lunt‟s work on the Intrusion Detection Expert System (IDES) [13] is another example

of an architectural framework. Based to large extent on Denning‟s Intrusion Detection Model [8], IDES

proposed a user behaviour classification model in terms of „measures‟, singled aspects of a user or

subject‟s behaviour on the monitored system. These metrics were further classified into „ordinal‟ or

„continuous‟, depending on whether they could be expressed in terms of a numeric count or

quantification of the measure. IDES was the first statistical model that was independent of any

particular system, application environment, system vulnerabilities or type of intrusions.

 32

In January 1997, researchers funded by the Advanced Research Project Agency (ARPA) finished the

specifications for the first Common Intrusion Detection Framework (CIDF) [29]. This was a major

step towards establishing an architectural framework that focused on the issue of interoperability

amongst different Intrusion Detection systems. A large part of the CIDF specification is dedicated to

the process of establishing a standard way for describing intrusion events and directing IDS responses.

In addition, an Applications Programming Interface (API) is defined as a reference for IDS software

engineers, as well as a Specification Language to describe intrusive activity.

Despite the fact that the CIDF specification was designed to act as an interoperability tool for the IDS

vendor community, at the time of writing, it has not been widely adopted in the commercial or

academic world. Moreover, the development of the CIDF specification appears to be currently halted.

While nobody can safely identify a reason for the fate of this interesting Computer Science experiment,

certain aspects of the research effort have been taken over by a new group of the Internet Engineering

Task Force (IETF). The Intrusion Detection Working Group (IDWG) [30] is a relatively new research

effort focusing mainly on an IDS component message exchange framework, producing a variety of

extensive specifications for IDS exchange and message implementation.

One of the latest IDSF efforts that we should also note is the Furnell and Dowland‟s Intrusion

Monitoring System (IMS) architecture [31]. The architecture follows the principles of the previously

mentioned IDSF research efforts, in that it combines both anomaly and misuse-based intrusion

detection techniques and has a certain level of abstraction focusing on the way IDS components should

be combined, in order to improve detection efficiency.

However, the IMS architecture has many novel features and it is worth emphasizing one that is the

most important for this research project. In the early eighties, Anderson [33] has identified the need for

handling not only intrusive activities originating from unauthorised users, but also events generated by

legitimate users that abuse their privileges. The IMS architecture is the first IDSF effort that goes one

step further by indicating a framework to handle this issue.

 33

Apart from the academic and generic research and development IDS concepts, commercial vendors

have produced their own design paradigms. Appendix A contains a generic overview of selected

commercial IDS products available at the time of writing, with emphasis on outlining their generic

design philosophy.

2.6 Threats: Definition, Detection and the concept of threat estimation

This thesis is concerned with predicting threats. Whilst earlier sections of this chapter have presented

the concepts of computer security and computer intrusions, they have not explained what a threat really

is and how it relates to the overall Intrusion Detection process. Pfleeger et al [32] defines the term

threat in an IT infrastructure context as “a set of circumstances that has the potential to cause loss or

harm”. These circumstances might involve human-initiated actions (intentional IT intrusions), flaws in

the design of the computer system and environment factors (natural disasters).

However, as the aforementioned definition states, threats do not always evolve into harmful situations.

A threat‟s potential is realized by the exploitation of a number of weaknesses in the design of the IT

infrastructure (software, hardware, management procedures, location). These weaknesses are called

vulnerabilities [32]. One can then distinguish the relationship between threats and vulnerabilities: A

threat turns into a harmfull situation by means of exploiting one or more vulnerabilities.

In order to illustrate the difference between these two concepts, it is useful to consider an example in

Data Security context. The fact that a potential cracker is skilled and desires to break into an

organization‟s IT infrastructure is a threat that will not always materialise into a successful intrusion.

On the other hand, if your company‟s systems are lacking updated software, monitoring software

and/or the care of a professional system administrator, a window of opportunity is created for the

cracker by these vulnerabilities.

Most of the IDS designs address the problem of tackling intrusions of external origin. The following

two Chapters of the thesis will elaborate more on the anatomy of internal intrusions, which is the

thematic area of this research project. Appendix A outlines a selection of IDS products that specialise

in detecting the problem of internal intrusions. This is a positive step towards the handling and isolation

 34

of insider cases. However, the mere detection of an internal intrusion is not a panacea in the process of

managing these kinds of threats. A way to predict these kinds of threats would also be a valuable asset

of an Intrusion Detection System.

The process of predicting a particular set of events in order to prevent their occurrence and provide a

better understanding of their underlying mechanisms does not represent a new methodology in the field

of science. Many scientific disciplines have introduced prediction mechanisms that have a number of

applications. The utilisation of game theory in financial forecasting [47] in order to predict the value of

shares in the stock exchange market and the processing of seismic data for oil discovery purposes [48]

are notable examples of models that already serve our world and used on a daily basis by analysts, as

value-added tools that help their research.

In the same way, a process that provides an estimate of emerging internal threats by modelling certain

factors would be a useful tool for a Data Security analyst. The International analyst firm Gartner

estimates that by the year 2005, 60% of security costs of a business enterprise environment will be due

to insider attacks [49]. An effective Insider Threat Prediction methodology would help data security

specialists identify individual factors that are likely to produce these threats. It could be a value-added

component of an existing Intrusion Detection System, instructing it to increase the intensity of

monitoring only for specific machines or users and hence increasing its efficiency. At the time of

writing, no known methodology exists in order to establish a suitable Insider Threat Prediction Model.

Thus, the epicentre of this research project is the task of deriving a suitable model that utilises threat

detection techniques, in order to facilitate the prognosis of insider IT misuse occurrence. The research

considers both insider threats (motive, skill and other factors) and vulnerabilities (mechanisms that the

insider IT misuser exploits in order to successfully breach a system). As a result, the context of Data

Security for this research project is the process by which we provide proactive capabilities to help the

system prognose insider threats, in order to safeguard its proper operation.

 35

2.8 Conclusions

This chapter provided an overview of the birth of the Intrusion Detection System, the concept of

Computer Security, threats and vulnerabilities, as well as a discussion of the major IDS techniques.

Appendix A offered an overview of commercial IDS paradigms. After the presentation of these

concepts, three issues should be clear at this point:

- None of the major IDS techniques (anomaly and misuse detection) represents a panacea for

providing an efficient IDS system that would result in a minimum number of false

positive/negative alarms.

- The shift of focus from developing pure IDS techniques to IDS Frameworks is still under

intensive development, with IDS vendor interoperability and Intrusion Specification issues not

being substantially addressed.

- The development of research frameworks that will specifically address the issue of managing

insider threat by predicting legitimate user intrusive activities has largely not being addressed

by the IDS community at the time of writing.

The last point forms the main argument for the motivation of this research project. Consequently, the

next logical step is to start analysing the legitimate user problem in more detail. The next Chapter of

the thesis introduces the reader to the concept of the legitimate user misuse problem. Essential

terminology is introduced as well as references to relevant cases and surveys, in order to provide an

estimate of the magnitude of the problem.

 36

CHAPTER 3

COMPUTER INTRUSIONS AND THE ‘INSIDER’ IT MISUSE

PROBLEM

Misuse: to use (something) in a wrong way or for a wrong purpose
 Longman Dictionary of Contemporary English

Previous chapters considered the concepts of computer intrusions, threats and vulnerabilities. It is now

time to examine their manifestation in the real world. After familiarising the reader with essential

terminology, this chapter will present various statistics that provide information about the frequency of

occurrence and type of computer intrusions. The figures were taken from recent and highly regarded

information security surveys. A subset of computer intrusions is related to IT misuse incidents that

originate from legitimate users. Some surveys simply mention these types of incidents, whereas others

consider them to a greater extent. However, the main goal of this chapter is to prove that the

importance of the insider IT misuse problem has been undervalued by critically evaluating the

statistical figures and examining the real amount of information they reveal.

3.1 Towards qualification of insider IT misuse acts

The „insider IT misuse‟ problem has two main thematic areas. One of them relates to the term „insider‟.

At the time of writing there is no consistent definition throughout the information security literature for

it. The earliest attempt to classify internal misuse of computer systems is presented by Anderson [33]

and discusses borders of distinction amongst 'masqueraders', 'misfeasors' and 'clandestine' users.

'Masqueraders' are insiders that exploit weaknesses of the authentication modules of a particular

application or Operating System, thus gaining the identity of other legitimate users. A 'misfeasor' is an

insider that does not need to masquerade, but abuses the power of his/her privileges to alter maliciously

the operation of the system. A 'clandestine' user is related with authorised users and their capabilities

to bypass audit, control and access resource mechanisms in a particular computer system. It is

important to emphasize that the categories of masqueraders and clandestine users are really disguising

as legitimate (i.e. authorised) users. Hence, although they are intruders that appear to act as internal

elements of an IT infrastructure, they cannot be considered as „insiders‟ due to the fact that they do not

represent the people who are meant (authorised) to use the systems (misfeasors).

 37

Some studies [50] tend to further classify insiders as logical and physical ones. A logical insider

operates physically outside the context of an organisation. For instance, consider the case of an

employee that uses telnet to connect to his UK company transaction server from China. Other factors,

such as operating system authentication techniques, as well as the environment of the user might

differentiate amongst logical insiders. On the other hand, a physical insider would connect to the same

server, within the physical bounds of the IT infrastructure of the organisation (including buildings, or

external trusted networks referred to as extranets). However, if we consider the increased levels of

connectivity offered by the convergence of mobile computing and telecommunications platforms, the

previously mentioned classification scheme will become less apparent in the near future.

The distinction between an insider and an outsider can be vague when it comes to authentication

mechanisms. Assuming traditional password-based authentication mechanisms that, at the time of

writing, constitute the norm for authenticating users on most Operating Systems, and the fact that a

successful outsider might be able to bypass them successfully by exploiting vulnerabilities, users that

give away their passwords and other techniques, there comes a point when an outsider becomes an

insider. From a system point of view and depending on the skill of the external attacker to emulate the

behaviour of a legitimate user, there might be no difference between an outsider and an insider.

 Instead of conforming to the previous ambiguous interpretations of the term „insider‟, a more suitable

conventional interpretation is proposed. An insider is a person that has been legitimately given the

capability of accessing one or many components of the IT infrastructure, by interacting with one

or more authentication mechanisms (plain text password, PKI, biometric or smart card token). The

word „legitimately‟ has been underlined because it emphasises the main difference between an insider

and an external cracker. An insider should always be able to have at least a point of entry in one or

more computer systems. The implications of having such a point of entry is that an insider does not

usually need to consume as much time and effort to obtain additional privileges as an external cracker

does, in order to exploit IT infrastructure vulnerabilities and mount an attack. It also means that an

insider is less likely to get caught by implemented security measures because of the level of trust that

he/she enjoys. These aspects make the problem of tackling insider IT misuse a composite and difficult

one. Latter paragraphs will illustrate this fact with appropriate case studies.

 38

Pfleeger et al [32] mentions the security acronym „MOM‟ which stands for „Method Opportunity

Motive‟, indicating that there are many elements in an IT security attack recipie. The „Method‟ term

signifies the skills, knowledge, tools necessary to complete an intrusive activity. „Motive‟ is the actual

reason to perform the attack (trade secret theft, forcing a company to loose revenue, revenge are

examples of potential motives). Finally, the term „Opportunity‟ relates to the time and access to

accomplish the attack. An outsider and insider might have similar motives and skills, however their

respective opportunity chances to mount an attack are different. As the previous paragraph explained,

an insider needs less effort and enjoys a greater level of trust than an outsider.

The other side of the „insider IT misuse‟ problem relates to what can be considered as misuse activity.

Although the great majority of the people are familiar with the generic meaning of the word 'misuse',

when we try to map it to an insider IT context, there is a need to clarify certain issues. Insider IT

misuse can be a very subjective term. In fact, one of the most challenging tasks is to draw a clear line

that separates an IT misuser from a person that uses the available resources in an acceptable way and

for an approved purpose. The words 'acceptable' and 'approved' imply the presence of rules that qualify

(or quantify) conditions of allowable usage for the resources concerned. These rules are often

embodied within an IT usage policy. Part of this organisation-wide policy is the information security

policy, defined as the 'set of laws, rules, practices, norms and fashions that regulate how an

organisation manages, protects, and distributes the sensitive information and that regulates how an

organisation protects system services' [51].

Different organisations pose different restrictions on IT usage, and this variety of rules adds a

considerable level of ambiguity to the term 'misuser'. In order to overcome this uncertainty, it is

necessary to introduce a taxonomy of insider misuse incidents. The derivation of such a taxonomy will

systematise the deployment of an information security policy across an organisation and is a necessary

step for advancing the research on insider IT misuse. However, we shall not discuss a suitable

taxonomy here. Instead, chapter 5 of this thesis presents a suitable insider misuse classification scheme.

 39

3.2 Towards quantification of insider IT misuse acts

The quantification of the magnitude of the insider IT misuse problem is a difficult process. One has to

start by looking at general computer intrusion figures that are widely available and then try to isolate

data that are relevant to activities initiated by insiders.

The British Department of Trade and Industry (DTI) in association with PriceWaterhouseCoopers

(PWC) published the „information security breaches survey 2004‟ [52]. The survey mentions that

Insider Misuse has doubled since the year 2002, mainly driven by the increased adoption of World

Wide Web and Internet related technologies. Approximately a third of the DTI/PWC 2004 respondents

claimed that their worst security incident was internal. This is clearly another verification of the

existence of internal security threats.

Figure 3.1 displays the distribution between internal and external incidents in the DTI/PWC 2004

survey for small, medium and large organisations. Whilst the smaller IT infrastructures appear to face

more incidents of external origin, the gap between insider and outsider incidents is smaller for

respondents of medium and large scale organisations. This indicates that the likelihood of IT misuse

from legitimate users is a very probable scenario.

Figure 3.1: External versus internal incidents in terms of report frequency [52]

External versus internal incidents

53 46 44

32 43 38

0%

20%

40%

60%

80%

100%

Small Medium Large

Size of companies

P
er

ce
n

ta
g

e
o

f
re

sp
o

n
d

en
ts

Not known

External

Both

Internal

 40

Figure 3.2: Types of misuse reported by UK businesses [52]

Figure 3.2 displays the type of legitimate user misuse reported by UK businesses [52]. The misuse of

World Wide Web and email facilities are the most frequent type of insider misuse activities. Excessive

usage of these facilities for personal use as well as for viewing and disseminating inappropriate

material were considered by the DTI/PWC survey as misuse incidents for web and email facilities.

The „Computer Crime and Security Survey‟ of the San Francisco-based Computer Security Institute

(CSI) [53] is another survey that also emphasizes the presence of insider threats. The survey makes

clear that for the last seven years of its research scope, computer intrusions have formed a substantial

threat for IT infrastructures. In the year 2003, ninety percent of respondents detected computer security

breaches within the last twelve months. More than three quarters (78%) of the participants cited their

Internet connection as a frequent point of attack. It should be also noted that the rising frequency of

computer intrusions is also accompanied by substantial financial losses associated with them.

Approximately forty seven per cent of the 2003 survey‟s respondents were willing to quantify their

losses to a total sum of 201,797,340 US dollars. This amount is 55% lower than the year 2002

estimated total annual losses. However, if someone takes into account the fact that the 2003 annual

loss figure does not include the remaining fifty-three percent of the participants that were not willing

Type of misuse versus frequency of reporting

39
30

47

76

45

44

40

239
14

137 12

0%
10%

20%
30%
40%
50%

60%
70%
80%

90%
100%

W
e
b
 b

ro
w

s
in

g

E
-m

a
il

U
n
a
u
th

o
ri
z
e
d

A
c
c
e
s
s
 t

o

S
y
s
te

m
s
 o

r
D

a
ta

In
fr

in
g
e
m

e
n
t

o
f

L
a
w

s
/R

e
g
u
la

ti
o
n
s

Type of Misuse

P
e

rc
e

n
ta

g
e

 o
f

re
s

p
o

n
d

e
n

ts
more than one

hundred

eleven-one

hundred

two-ten

one

 41

(or able) to estimate their losses, it is reasonable to assume that the real cost of computer intrusions is

considerably higher than the reported one. This is true not only for the year 2003 but also for the

estimated annual loss figures of previous years.

The next big question to answer is what poses a greater danger to an IT infrastructure: Are insider

misuse incidents more dangerous than the ones caused by the acts of external hackers? The 2003

CSI/FBI survey contains useful figures that are analysed in the following paragraphs.

The 2003 CSI/FBI survey figures are not accompanied by any commentary on the issue. This was not

the case for earlier editions of the same survey. The 2002 CSI/FBI Computer Crime [54] survey

debates the issue. The director of CSI Patrice Rapalus states that the survey “has challenged some of

the profession‟s „conventional wisdom‟, for example that the „threat from inside the organisation is far

greater than the threat from outside the organisation‟…”, based on the fact that the overall number of

the reported insider incidents has dropped.

The shift of perceived threat from insiders to external hackers was also noted by Dr. Dorothy Denning.

In the 2001 CSI Computer Crime and Security survey [55], she wonders about the dropping frequency

of insider incidents by stating: “For the first time, more respondents said that the independent hackers

were more likely to be the source of an attack that disgruntled or dishonest insiders (81% vs 76%).

Perhaps the notion that insiders account for 80% of incidents no longer bears any truth whatsoever.”

On the other hand, Dr. Eugene Schultz [55] has a different opinion about the way the CSI report

presents the importance of the insider threat, clearly challenging the CSI survey: “Is it that we should

ignore the insider threat in favour of the outsider threat? On the contrary. The insider threat remains

the greatest single source of risk to organisations…”

This diversity of opinions represents one fundamental question about the insider misuse problem.

Should someone weight its importance in terms of its occurrence frequency or in terms of the potential

consequences that this particular type of incident might have? The truth lies in the statistics presented

in the CSI survey. If someone analyses them carefully, some interesting patterns will be revealed.

 42

The graphs of Figure 3.3 report external and internal (insider) incidents for the last four years (2000-

2003). The thing to note is that there is a small difference between the number of respondents that

reported an external incident and those who reported insider events. This was also reflected by the

figures of the DTI/PWC survey for medium and large scale organisations.

Figure 3.3: External versus internal attack incident frequency (source [53])

The CSI/FBI 2003 survey provided an estimated cost for various types of computer crimes. Appendix

B of the thesis contains the survey table „The cost of Computer Crime‟, where one can view aggregate

costs sampled over a 48 month period (2000-2003). Whilst the table is a useful generic indicator of the

39
41

49
46

38
40

42
45

0

10

20

30

40

50

60

2000 2001 2002 2003

P
e
rc

e
n

ta
g

e
 o

f
re

s
p

o
n

d
e
n

ts

External versus internal attacks incident
reporting (1-5 incidents)

External
attacks

Internal
attacks

11

14 14

10

16

12
13

11

0
2
4
6
8

10
12
14
16
18

2000 2001 2002 2003

P
e
c
rn

ta
g

e
 o

f
re

s
p

o
n

d
e
n

ts

External versus internal attacks incident
reporting (6-10 incidents)

External
attacks

Internal
attacks

 43

financial impact of computer security incidents, it cannot be used to provide a safe comparison between

insider and external incident costs. This is because very few of the incident categories mentioned in

the table can be attributed exclusively to legitimate or external perpetrators.

For instance, categories such as “System Penetration by Outsider”, “Insider abuse of Net access” and

“Unauthorised insider access” can be safely used to relate the cost of security incidents to external or

internal origins. In contrast, the rest of the incident categories could be attributed to both internal and

external origins. This fact combined with the small percentage of the survey respondents that were

able to quantify their losses (just 47% for 2003) makes the comparison between internal and external

incidents unfeasible.

Commercial security software vendors have also started warning about the emerging problem of insider

threat. Although someone suspects that these surveys might have a strong sales-orientated bias, they

still represent a good marginal picture of the problem. TecSec [56] is a company specialising on

preventing confidentiality breaches that result from legitimate user actions. They use a method known

as „Constructive Key Management(CKM)‟ to control file access to and from a particular group of

users. The vendor quotes that approximately 70% of data loss originates from accidental or planned

breaches of security policies by employees.

„Rapid7‟ [57], a New York based security software vendor that specialises in system penetration testing

has also summarised its results on computer intrusive incidents. In their independent 2001 „Network

Security Survey‟, the vendor has queried more than 160 US based companies and government

agencies. Rapid 7 estimates that during the year 2000, US businesses lost approximately 1.6 trillion US

dollars. The survey does not justify the exact source or the way the vendor derived this amount. The

figure seems exceedingly large when compared to the statistics quoted by similarly-minded surveys

(the CSI estimates a total loss of approximately 1.5 billion US dollars for the period 1997-2001).

However, it does state clearly that a marginally higher percentage of its participants believes that they

are more at risk internally (31%) than externally (25%), whereas the highest percentage (41%) believes

that they are equally at risk from both internal and external factors. The remaining 3% did not have an

opinion about the most probable origin of threats.

 44

3.3 Trust, insider IT misuse and some notable real-world cases

Apart from the alarming figures quoted in several surveys, someone can grasp the real threat potential

of insider IT misuse by considering one fundamental aspect of every insider: The level of trust he/she

enjoys in a particular organisation. It is this level of trust that makes the detection of legitimate user

misuse difficult to detect and deal with. The best way to illustrate this difficulty is by briefly

mentioning a sample of real-world insider cases that have received widespread attention.

The 2001 CSI/FBI survey [55] cited the case of Robert Hanssen, a 56 year-old FBI veteran. Hanssen

abused his trusted access to the FBI Automated Case Support System that contained classified

information about ongoing investigations and handed critical information to Russian agencies. In

return, he was receiving large sums of money, inflicting a great deal of damage upon the prestigious

image of the Federal Bureau of Investigation and the national security of his country. Nobody could

imagine that a church-going and patriotic family man was betraying his country for money.

Hanssen‟s seniority and level of trust were not the only weapons that helped him to remain unnoticed.

Having developed a more than average level of IT knowledge, he utilised an unusual way of hiding the

information he wanted to trade with Russian agents. Hanssen was using specially formatted 40-track

mode diskettes, in order to hide the sensitive information in (what appeared to be) a blank area of the

disk. Even if someone wanted to inspect the floppies he was using for his personal data backup

purposes, it would have been difficult to discover the hidden information without the usage of an

advanced data forensic tool. The combination of his colleagues‟ trust and his own data hiding

techniques allowed him to operate for certain number of years inside various FBI facilities.

The case of Abdelkader Smires [58], a chief software engineer who worked with Internet Trading

Technologies is a typical example of what can be achieved by a disgruntled insider. Smires had

financial differences with his employer. He thought that he was underpaid and requested a pay rise

coupled with a range of additional benefits. When his requests were turned down, he decided to take

revenge by using the computers of his previous employer (Queens College) to launch a Denial of

Service (DoS) attack. His actions caused several hours of downtime (and lost revenue) over a three-day

period for his employer.

 45

There are two important points to consider with regards to the Smires case. The first fact is that he had

legitimate access to another organisation (Queens College) due to an account that should had been

erased a long time ago. This allowed him to conceal (at a first stage) his attack on Internet Trading

Technologies. The second and most important point is the level of knowledge he possessed about

Internet Trading Technologies‟ IT infrastructure. Smires knew which IT components are likely to be

vulnerable to certain methods of DoS attack. Hence, it was very easy for him to be able to disrupt the

functioning of the computer systems.

Garfinkel and Spafford [7] mention the „Leeson-Iguchi‟ case. Nick Leeson („Barings‟ Bank –

Singapore) and Toshihibe Iguchi („Daiwa Bank‟ - New York) were investment traders working

together for two major financial organisations. They made risky investments and lost large amounts of

investment capital. However, instead of admitting their losses, they illegitimately modified computer

records to cover their mistakes and continue to be able to request vast amounts of money to invest. As a

result, Barings Bank was forced to insolvency and „Daiwa‟ lost its entire United States customer base.

More than 1 billion dollars of investment capital vanished as a result of their actions.

Barings Bank had an internal data audit mechanism that focused on discovering potential external

breaches, without focusing on insider actions. Clearly, they have underestimated the insider threat

factor. They could never think that two accountants that had direct access to database records of

investment funds would commit fraud in this way. This electronic record forgery would probably go

unnoticed if Leeson and Iguchi managed to stop their losses. They did not and consequently the large

sums of unaccounted investment capital forced an internal investigation that revealed their actions.

E-mail abuse is a different part of the insider misuse spectrum and is revealed by the Norwich Union

versus Western Provident Association case [59]. A Norwich Union employee circulated an e-mail that

contained what could be considered as a sarcastic (or defamatory) rumour about Western Provident

going into financial difficulties. The e-mail leaked outside the company (another internal user thought

it was a great joke) and eventually came to the attention of the rival company. Consequently, Western

Provident took legal action against Norwich Union and the case was settled with the latter paying

 46

approximately £450,000 pounds in compensation plus the legal expenses for Western Provident. What

was initially considered as an innocent joke proved to be the reason for commencing a rather expensive

legal case.

3.4 The borders between internal and external cases

After qualifying and (attempting to) quantify the magnitude of the insider misuse problem, one might

attempt to draw a limit between what can be classified as an external incident and what can be

considered an internal case. However, one real-world case might offer an alternative view that defies

this dualistic approach.

In the morning of the fifteenth of November 2002, the Computer Emergency Response Team (CERT)

at the University of Oslo Computing Services decided to reset the passwords of approximately 52,000

campus users [60]. The decision was taken after the disturbing discovery that a group of German

hackers have managed to gain access to several user accounts, „masquerading‟ as legitimate system

users. After the cumbersome process of issuing tens of thousands of new user passwords, extensive

forensic examination of several servers took place, trying to establish the method that won the hackers

access to the service. Despite the employment of various information security mechanisms, the weak

point was traced back on a third party telephony database product. An external contractor was testing

the telephony database, but when the system became operational, the contractor forgot to change the

trivial administrative password of the system.

The previous scenario represents no unusual elements (similar administrative mistakes are likely to

occur often). The press and the University management authorities have treated the case as an external

hacking incident. On the other hand, someone could argue that there were several internal factors that

have contributed substantially towards the establishment of the breach.

The question on how someone should classify security incidents is a rather philosophical one. If

someone wishes to use the point of origin as a classification criterion, then it would be right to

characterize the University of Oslo incident as an external one. However, the point of origin is not

necessarily the best criterion for understanding why security incidents emerge. The enabling

 47

mechanisms that allow an external entity to penetrate the defences of an IT infrastructure are also

important and they might be related to internal factors. In this case, the external contractor as well as

the responsible local system administrator who did not supervise a machine that was connected to an

operational network, were at the time a liability for the organisation in question. This could happen due

to excessive workload, lack of training, bad communication or lack of appropriate regulations. The

main point is that insiders that accidentally (or even deliberately) do not perform their job properly can

constitute a substantial threat for the IT infrastructure of the network.

Hence, it is fair to say that for every external case there might be a range of internal factors that

contribute to the establishment of a successful information security breach. Mutual exclusion is not

always applicable in this domain and a comprehensive Insider Threat Estimation process should take

these factors into account.

3.5 Conclusions

All the previously mentioned cases represent common trends of the insider IT misuse problem. The list

is by no means an exhaustive one. Chapter 5 will elaborate and classify more systematically the

different types of insider IT misuse. Here we only provide a representative sample. All cases of this

sample proved to be very expensive mistakes for the organisations associated with them and they all

had one thing in common: The insiders that committed the misuse activities were all blindly trusted and

they were acting beyond suspicion.

Hanssen was often described by his colleagues as a “Church going, family man”. Nobody (including

the highly trained FBI officers) thought that this man was selling national secrets for money. Smires

was trusted (despite the fact he had no substantial reason to have an IT account) by the system

administrators of Queens College because he used to be an academic member of staff and he knew the

vulnerable points. Leeson and Iguchi were highly respected traders, and hence nobody bothered to

check their computer account records for inconsistencies. The Norwich Union case shows that insider

threats can be accidental, showing that large corporations ignore the power of communicating to the

external world via an IT infrastructure. Finally, the contractors and system administrators at the

University of Oslo case were expected to contain these vulnerabilities effectively and the case logically

 48

proves that some cases that have been characterised as external breaches contain some sort of internal

misuse element.

Alarming figures that indicate only a fraction of the real magnitude of the problem and high-profile

real-world cases constitute the picture of the growing insider threat. An important conclusion that can

be derived from the previous discussions is that the frequency of occurrence of a particular type of

incident should not be used as the only measure of the level of threat it constitutes for a particular

organisation. Indeed, the figures might disprove conventional wisdoms of the type „80% of security

incidents come from insiders‟ but they really undervalue the importance of the insider threat.

In addition, it was shown that for what people classify as external attacks, there is always a range of

internal factors that open the way for hackers. This last consideration prompts for a radical change in

the philosophy we classify internal and external security incidents.

For all these reasons, a more systematic examination of the Insider Misuse problem is needed and the

best way to achieve this goal is to produce a survey that targets specifically insider misuse. The next

chapter of this thesis discusses the scope of devising such a survey and presents its results.

 49

CHAPTER 4

THE INSIDER IT MISUSE SURVEY

After the discussion of more generic information security surveys, it is now time to target the problem

of detecting Insider IT misuse by gathering more specific information about it and the technologies that

attempt to address these issues. This chapter will present the thinking behind the design of the „Insider

IT Misuse Survey‟, as well as the collected results, in order to answer several fundamental questions:

 How popular are Intrusion Detection System technologies amongst IT professionals? Do

they contribute towards the containment and prevention of computer intrusions?

 Are legitimate user incidents more frequent than external hacking attacks? Is the first type

of incident more serious than the latter one as expected after examining earlier evidence in

Chapter 3, in order to verify the necessity of researching the field of Insider IT Misuse?

 What really constitutes an insider IT misuse problem? What are the most frequent ways for

a legitimate user to abuse an IT infrastructure? The answer to this question will greatly help

towards forming ways to classify legitimate user misuse activities.

 What are the most likely places in computer systems to collect information about legitimate

user misuse, in order to devise appropriate metrics for gauging the potential for IT misuse?

 Is there any indicative information about what kind of user is likely to initiate an insider IT

misuse incident? Forming user profiles for specific misuse incidents can aid the

construction of threat estimation techniques to a great extent.

Two methods were considered for delivering the survey to the respondents: traditional post and the

World Wide Web. It was decided that the best way to deliver the survey‟s questionnaire to the

respondents was via the World Wide Web interface for several reasons. The time scales for devising,

distributing, collecting and analysing the data were limited to 9-12 months. The entire research

project‟s lifespan was 36 months and time was needed for researching other aspects of the insider

misuse problem. As a result, publishing the survey on a web page was the fastest (and most

economical) way to collect a large number of results in the shortest possible time. In addition, it was

easier for most of the respondents to complete the survey on-line and press the „Submit‟ button to send

their results, rather than filling a form and then go through the time-consuming process of posting it.

 50

However, delivering a survey via the World Wide Web has its disadvantages when it comes to result

accuracy, verifying the identity of the respondent and providing assurance about the protection of the

respondents‟ submitted data. Several measures were deployed in order to address issues ranging from

anti IP spoofing techniques to maximum database server security. Each participant‟s e-mail address

was verified by sending automatically an e-mail, as a receipt of participating in the survey. E-mail

addresses that were invalid were marking the participant as unreliable and the entire record was

discarded. All valid records were then submitted to a Relational Database Management System

(RDBMS) for further processing. The RDBMS engine was running on a different computer than the

Web Server offering the survey‟s web forms to reduce the possibility of a data security breach.

The „Insider IT misuse‟ survey ran for approximately nine months (August 2001 – April 2002) and

targeted various IT professionals (system administrators, IT security specialists, technical managers

/CEOs) across Europe.

Appendix C contains a copy of the survey‟s questionnaire, which consisted of 18 questions divided in

three parts. Part A gathered generic information about the participant and his/her organisation, as well

as information related to the usage of intrusion detection systems and firewall technologies. Part B

aimed to compare the level of criticality of the insider threat to that of external hacking activities, in

terms of frequency of occurrence, resulting financial damage and legal consequences. Finally, Part C

collected more information about the nature of the insider IT misuse, providing useful insights on

where and how the problem occurs more frequently.

In general, the number of questions was kept to a minimum to avoid inconveniencing prospective

participants whose time was potentially limited. In order to persuade people to avoid being anonymous

and hence have an additional way of validating the authenticity of the submitted results, a subscription

service was offered: If the participants submitted a valid e-mail address, they would automatically be

mailed back the results of the survey.

 51

4.1 Who were the respondents

 In overall, the survey collected data from 50 respondents of European origin. Although a greater

number of participants were originally expected, this number still represents a valid sample as the

survey displays clearly certain trends that could be used to analyse further the insider problem and

make a profile of the average insider.

Figure 4.1: Participants’ country of origin

Figure 4.2: Participation sorted by Industry Sector

The bulk of the participants came from the United Kingdom (70%) as the graph of figure 4.1 indicates.

The next graph illustrates the breakdown of respondents by industry sector, in response to question 3 of

the survey: „In which of the following IT sectors does your company/organisation belong?‟ Software

70%

8%

6%

4%

4%

2%

2%

2% 2%

Respondents by Country

United Kingdom

Greece

Norway

Belgium

Germany

Italy

Netherlands

Sweden

France

Respondents by Industry Sector

26, 26%

14, 14%

14, 14%10, 10%

10, 10%

8, 8%
6, 6%

8, 8% 4, 4%

Internet Service Provider

Software and Hardware

Vendors

Academia

Financial Organisations

Government

Utilities

Transportation

Defense

Other

 52

and hardware vendors came on top of the list (26%), whereas a smaller number of participants

originated from „utilities‟ and defence companies.

Question 1 of the survey („What is your role inside your organisation/company?‟) probed the

professional background of the participants (Figure 4.3). The great majority of the questioned IT

professionals had technical background (system administrators-46%, system developers-24% and IT

security consultants-18%), leaving a margin for non-technical opinions that originate from

management (Human Resources, Executive Boards).

This does not necessarily provide a balance of opinions amongst technical and non-technical

respondents. The thesis is after all concerned at large with addressing the problem of insider IT misuse

at a technical level. Nevertheless, in an IT infrastructure there is always a direct relationship between

what is enforced by technical personnel and the desired information security policy derived by

management. Thus, an opinion from management would still be of great value for the respondent

sample, especially for information security policy issues.

The majority of the participants came from medium to large-scale organisations (between 100 and 500

computer systems), as the final chart of figure 4.4 indicates. Finally, 47 out of the 50 respondents had

more than 5 years of experience in their current role.

Figure 4.3: The professional background of the respondents

46%

24%

18%

12%

Respondents by Profession

system administrators

system developers

security specialists

managers

 53

Figure 4.4: The respondents’ size of IT infrastructure

4.2 Usage of security related technologies and reported incidents

Questions 5 and 6 of the survey tried to briefly estimate the deployment popularity as well as the

perceived level of satisfaction from the operation of several Data Security technologies amongst the

respondents. The participants were offered four possible answers for each of these two questions:

 “Yes, we use these technologies”: It is known that a particular range of technologies is

employed, without the participant indicating major problems with their operation.

 “Yes, but they are not very effective”: It is known that a particular range of technologies is

employed and it is also known that the respondent is not happy about their operational

effectiveness.

 “No, but we are thinking of installing them”: This answer indicates that the participant has not

deployed the technology, but she clearly thinks the technology is useful.

 “No, and we believe we do not need them”: The respondent indicates that the technology is

really an unpopular choice.

The design of these questions would have been complete if the survey asked the participants to also

justify the reasons for being dissatisfied with respect to the technologies in question. However, it was

felt that this could substantially increase the amount of time it takes to complete the survey and could

potentially act as a deterrent for the respondents. The main target was to keep the survey sort and

simple and focus on aspects specific to the Insider Misuse problem instead.

2% 14%

20%
36%

14%

6%
8%

Respondents by number of computers used

between 1 and 10

between 10 and 50

between 50 and 100

between 100 and 500

between 500 and 1000

between 1000 and 5000

5000 plus

 54

Chapter 2 of the thesis elaborated on the origins of Intrusion Detection Systems and proved that they

represent a relatively new technological trend of the Information Security domain. This fact is reflected

in the results of this survey. In response to the fifth question „Does your organisation employ a

combination of 'firewall' and/or antivirus and/or data encryption product?‟, nearly all (96%) of our

respondents answered that this was the case (including those that were happy and unhappy with their

operational effectiveness). 4% of the participants did not utilise any of the previously mentioned

„traditional‟ Data Security technologies. An analytical breakdown is illustrated in Figure 4.5.

On the other hand, the employment of Intrusion Detection Systems was more limited (Figure 4.6). The

following question asked the respondents to comment on whether they have deployed an IDS solution.

Only 22 out of the 50 (44%) respondents used Intrusion Detection. IDS deployments were always

combined with traditional information security technologies (i.e. none of our respondents used

exclusively IDS systems). This was somehow expected, given the fact that the corporate world is

always slow to adopt new technologies in mission-critical production environments.

Figure 4.5: Popularity of traditional Data Security technologies amongst the respondents

74%

22%

4%

Does your organisation employ a
combination of 'firewall' and/or antivirus

and/or data encryption product?

Yes, we use them

Yes, we use them but we
are unhappy

No, but will install them

 55

Figure 4.6: Popularity of IDS deployments amongst the respondents

With regards to the perceived level of satisfaction, it is evident that most users of traditional Data

Security Technologies were happy with their deployment. In particular, 37 out of the 48 (77%)

respondents that used these technologies believed that their operation was smooth with no negative

impact on their business. Similarly, the perceived level of satisfaction related to the usage of Intrusion

Detection Technologies was more or less on the same levels. 16 out of the 22 (72%) respondents that

employed IDS solutions in their IT infrastructure reported no major problems with their operation.

Figure 4.7: Security incident distribution with and without an IDS

32%

12%

46%

10%

Does your organisation employ an Intrusion
Detection System?

Yes, we use them

Yes, we use them but
we are unhappy

No, but will install
them

No, we do not need
them

1

4

8

13

8

5

3

6

0

2

4

6

8

10

12

14

one-five five-ten ten-twenty more than
twenty

N
u

m
b

e
r

o
f

R
e

s
p

o
n

d
e

n
ts

Reported incidents

Distribution of number of security incidents

Without IDS

With IDS

 56

Despite the conservatism of the corporate world towards the new Intrusion Detection technology, an

important observation of this survey is that the employment of IDS infrastructures relates to a

smaller number of reported security incidents inside the respondents’ organisations. The graph of

Figure 4.7 illustrates the distribution trend of security incidents amongst the correspondents of the

survey, with and without IDS employments. It was created by combining data from questions 6 and 8

of the survey.

We can clearly observe a great reduction in the number of respondents that reported higher number of

security incidents (more than 10) with the deployment of Intrusion Detection Systems. The observed

distribution indicates clearly that a combination of an IDS and traditional data security technologies

produces configurations susceptible to a smaller number of security incidents, enhancing the defensive

effectiveness of an IT security infrastructure. This, in turn, indicates that IDS technology is a good

thematic area to concentrate the efforts for insider threat mitigation.

On the other hand, it could be argued that the number of reported security incidents does not

necessarily reveal their seriousness. This is true and hence latter paragraphs of this chapter provide

more information about the nature and the real impact of the reported cases.

4.3 Reported Incident analysis: types, places and effectiveness of security tools

One of the main goals of the Insider Misuse Survey is to reveal the true magnitude of Insider misuse

incident occurrence and compare it to that of external misuse activities. Whilst the previous sections of

this Chapter focused on data originating mainly from the first part (A) of the survey, it is now time to

focus on its second and third part, in order to provide useful insights into the insider misuse problem.

The majority of reported incidents in the Insider Misuse Survey appear to have internal origin.

Seventy per cent of correspondents (35 out of 50) have traced the majority of security incidents back to

legitimate users, whereas less than a quarter of the participants reported attacks that were mostly

related to external activities.

 57

Figure 4.8: The balance between incidents of internal and external origin

The remaining six per cent (3 out of 50) were not certain about the origin of the majority of the

reported security incidents. An interesting observation indicates that although all of them have

employed traditional data security technologies, only one of them had employed an Intrusion Detection

System. Since the number of respondents that meet this condition is relatively small and the details of

their IT infrastructure configuration are not known, definite conclusions cannot be made as to why they

were not able to trace the origin of these incidents. However, the result shows clearly a trend that

indicates a direct relationship between the employment of an IDS and the ability to trace back

incidents. This property is one of the fundamental functions of an IDS infrastructure, as mentioned in

Chapter 2 of the thesis.

We asked all respondents (not only those who traced the majority of their incidents back to internal

origins) to select the most likely type of internal abuse from a pre-selected list of incidents. Question 18

of the survey “Based on the experience you gained from the occurred insider incidents, which of the

following types of IT misuse incidents do you think that an insider is most likely to initiate?” gave the

results presented in Figure 4.9.

40 per cent (20 reported cases) of the respondents considered the storage and dissemination of

pornographic material on computer equipment as the most frequent type of legitimate user misuse. This

was followed by 12 reported cases of theft or fraudulent alteration of proprietary and commercially

sensitive information (24%), whereas e-mail abuse was the third most common type of misusing an IT

35

12
3

Would you say that the great majority of the incidents
were due to actions from...

legitimate users

unauthorised users

don't know the origin

 58

infrastructure accounting for 16% of the reported cases. Internal virus outbreaks (two intentional

incidents were recorded of which one of them was classified as intentional one), physical destruction of

computer equipment (vandalism) and installation of illegal (unauthorised or pirate software packages)

were encountered less often and accounted for the remaining 20% of the insider incidents.

Figure 4.9: Most frequent occurring types of insider IT misuse

Although the previous statistics give an accurate picture about the range of organisations affected by

insider incidents, it does not necessarily reveal their true consequences for the respondents. In addition

to the frequency of occurrence, one has to consider the financial consequences resulting from these

types of cases.

Figures 4.10 and 4.11 illustrate the reported substantial revenue loss for incidents of internal and

external origin respectively. It should be noted that what is represented here does not constitute

information based on stated sums of money. The figures represent the statistics of how many

respondents admitted substantial revenue loss. A total of 34% (12 out of 35) of the respondents that

have faced mostly internal security incidents reported serious revenue loss. The percentage is

marginally equal to the respective figures for substantial revenue loss for a majority of external misuse

incidents (33% or 4 out of 12), although the reported number of external cases was smaller than the

internal ones.

8

2012

3 5 2

Which of the following IT misuse incidents do you
think that an insider is most likely to

initiate, according to your experience?

email abuse

pornography

theft or alteration of info

internal virus outbreaks

illegal software/hardware
installation

vandalism

 59

More useful conclusions could be deducted if the reported lost revenue was quantified in relation to the

annual turnover of the organisations. Someone could then compare properly the financial impact of

external versus internal incidents. Unfortunately, only four out of the fifty respondents were able to

provide an estimated amount of lost revenue. It is reasonable to assume that this level of response does

not provide enough data for discovering trends and publishing useful information. Amongst other

things, we chose to leave the quotation of this amount as an optional part of the survey. The provision

of this kind of information can be time consuming and more importantly is a very sensitive internal

issue for many organisations. Consequently, the support of important conclusions on „modest‟ financial

implication estimations would be a strategic mistake for the validity of the data and could potentially

deter respondents from completing the survey.

Figure 4.10: Lost revenue implications for internal incidents

Figure 4.11: Lost revenue implications for external incidents

Another criterion that could be used to help us estimate the seriousness of insider incidents is the

existence of disciplinary procedures against the legitimate users. Thus, it is reasonable to assume that

the most serious of the internal misuse incidents are the ones that both contain elements of financial

and disciplinary implications.

34%

20%
29%

17%

Revenue loss from insider misuse

Substantial revenue loss

No substantial revenue loss

No revenue loss

Don't know/answer

33%

17%17%

33%

Revenue loss from external misuse

Substantial revenue loss

No substantial revenue loss

No revenue loss

Don't know/answer

 60

Figure 4.12: The most severe insider misuse cases amongst the respondents

Questions 12 and 13 of the survey probed for legal proceedings associated with insider incidents. The

earlier question prompted the respondents to state whether their organisations faced legal action as a

result of an insider IT misuse incident. The latter one asked the respondents if they thought that they

should prosecute the malicious insiders. Based on that principle, we can now sort the various types of

insider misuse incidents, according to a more representative level of severity, as shown in Figure 4.12.

This sorting represents a total of eight incidents that were a direct result of legitimate user activities. On

the contrary, there was only one reported incident of external origin with equally serious consequences.

This latter fact tells us that insider misuse incidents are not only more frequent but more severe in

terms of their impact for the respondents of this survey.

4.4 The magnitude of accidental insider misuse

The insider incident case studies that mentioned in earlier sections (Chapter 3) of the thesis were

mostly concerned with legitimate users that intentionally misused the systems. However, it was then

explained that accidental cases could not really be ruled out. The limited (for this issue) data from this

survey back up this claim and reveal certain issues that deserve special consideration.

Although the number of reported legitimate accidental misuse acts was small (three out of 35

respondents that faced insider incidents) and there was no distinct pattern of emerging insider misuse

cases amongst the various IT sectors, two out of the three recorded misuse acts resulted in substantial

revenue loss for the affected organisations. In addition, all three organisations had deployed an IT

50%
37%

13%

The most severe insider misuse incidents

Pornography Theft or alteration of info E-mail abuse

 61

infrastructure that employed both traditional IT security tools and Intrusion Detection Systems, yet they

were unable to prevent those incidents.

Due to the fact that the number of accidental insider misuse incidents was small, definite patterns about

their severity and frequency cannot be safely established from the data of this survey.

4.5 The profile of an insider misuse act according to the respondents

The third part of the Insider Misuse Survey focused on another important aspect of tackling the insider

misuse problem: that of discovering the generic characteristics of a legitimate user that misuses a

system.

Earlier in the thesis, we discussed the subjective nature of the insider misuse problem in relation to the

various different IT security policies. An important characteristic of the insider misuse problem is to

show which things could be considered as misuse acts amongst the various IT sectors.

Question 14 instructed the respondents to choose from a range of well known legitimate user scenarios

and characterise them as IT misuse acts, according to the Information Security Policy of their

organisation.

Lost productivity from unauthorised use of computing resources during office hours (job and general

internet browsing, computer game playing), has been a concern for many organisations [61]. The

survey results reflected this problem. 23 out of the 50 respondents (46%) have identified that the

extensive unauthorised usage of computer resources for non-job related purposes is considered as a

misuse act by their IT usage policy. Those respondents came mainly from commercial organisations,

where efficient revenue generation is a primary concern.

 62

Figure 4.13: Lost productivity as a misuse act

Another popular category of classified internal misuse acts is the load that they impose on IT

infrastructures. Employees tend to sometimes overuse these resources (even when they employ them

for work-related purposes) causing a variety of administrative issues that could potentially result in

service degradation or failure. Excessive usage of hard disk space and network bandwidth are two great

examples that have forced system administrators to use mechanisms such as disk quotas [62] and

network bandwidth shaping techniques [63]. The earlier is a result of the ever increasing storage needs

of users, whereas the latter a consequence of the usage of many Peer-to-Peer applications (P2P).

22 out of 50 respondents of this survey have identified excessive resource utilisation as a misuse act

against their IT infrastructure. The available data showed no distinct pattern that could relate this

classification to a particular type of organisation. However, most of the respondents that considered

excessive resource usage as a misuse act had an IT infrastructure consisting of at least 500 hosts.

Therefore, it is safe to conclude that insiders are more likely to get penalised in large IT environments,

where the impact of resource over-utilisation becomes more apparent.

Figure 4.14: Excessive computing resource utilisation as an insider misuse act

Is the extensive usage of computing resources for non-

job related purposes a misuse act?

23

27

Yes

No

Is excessive computing resource (CPU, diskspace,

network bandwidth) utilisation considered a misuse

act?

22

28

Yes

No

 63

Finally, the majority of the respondents claimed that an attempt to install one or more unauthorised

applications is also classified as a misuse act for their organisations (38 out of 50 respondents). This

could be used as a strong criterion for the purposes of gauging insider threats in an IT environment.

Figure 4.15: Attempts to install unauthorised applications as insider misuse acts

Although previous paragraphs have shown the variability of what normally constitutes an IT misuse act

amongst the various IT organisations, there are also notable generic traits for the profile of an insider.

In particular, 86% of the survey‟s respondents believe that sophisticated (in terms of IT system

knowledge) users are more likely to misuse an IT infrastructure than less knowledgeable users. The rest

(14%) of the participants supported the opinion that user sophistication is not an important insider

threat indicator.

Figure 4.16: Association of user sophistication and probability of misuse amongst the respondents

In response to question 15 of the survey, “If you were designing a security pre-employment screening

procedure for candidate employees, what would you think is the most important piece of information

that should be included in the screening policy?” 40% of the respondents chose the verification of the

reasons for leaving previous employment as the most important parameter. The verification of the

Is the attempt of installing an unauthorised

application a misuse act?

38

12

Yes

No

Are sophisticated users more likely to abuse

the IT infrastructure?

43

7

Yes

No

 64

knowledge of IT security skills, previous credit difficulties as well as the existence of previous criminal

conviction records were also chosen as most important parameters at a smaller scale, as shown in

Figure 4.17.

Figure 4.17: Important security pre-employment procedure parameters (the insiders past)

A final important point provides a useful technical insight on how the insider misuse acts could be

traced accurately and conveniently (in terms of technical feasibility) in an IT infrastructure. Most

respondents flag the examination of bespoke security tool log files as the most reliable way of tracing

back the origins of an internal misuse act. The screening of web page and e-mail content followed as

the second and third most important ways that a system administrator respectively. Finally, network

traffic was the fourth most popular way of sensing for insider misuse activities.

The survey had offered OS log files as an option, however all the respondents turned down that option

and that was expected. If external entities have the ability to cover their trails by using special audit log

modification software [64], this would certainly be achievable by an insider whose access to the OS log

files might be given by default or might be easier to obtain.

Figure 4.18: What is the most indicative source for tracing insider misuse incidents

18%

10%

32%
40%

Perceived important parameters of security pre-employment procedure

Previous credit difficulties Previous criminal activity

Level of IT security skills Reasons for leaving previous jobs

30%

2%

26%
24%

18%

Perceived most indicative sources for signs of insider misuse

Security tool log files Pre-employment screening Web page content E-mail content Network Traffic

 65

4.6 Conclusions

Despite the small number of respondents, the statistics of the Insider Misuse Survey have clearly

shown notable trends, in order to establish a profile of the legitimate employee that misuses certain

elements of the IT infrastructure. The results were derived by examining the opinions of mostly

technical personnel. The majority of the respondents had more than five years of professional

experience in their roles. Hence, it is fair to say that although the number of respondents was nearly

half than what was originally expected, the respondents‟ opinions are of great value since they

represent experienced IT professionals that serve in a variety of IT infrastructure environments.

The fact that 35 out of the 50 respondents traced the origin of the majority of their security incidents

back to internal factors reveals that the insider IT misuse problem is certainly a well-established

threat factor for the health of computing environments. Due to the relatively small number of

respondents and the fact that the thematic area of the survey was biased towards insider misuse, it is not

safe to assume that the survey‟s majority of insider incidents can be considered a statistically safe

result. However, the goal of this survey was to reveal the nature of insider incidents. The survey did not

intend to prove (or disprove) the conventional wisdom of some Information Security surveys, which

dictates that most security incidents occur from legitimate users. This is also the conclusion of the 2003

CSI/FBI computer crime and security survey [53].

The survey has shown that a legitimate employee is more likely to misuse the IT infrastructure by

storing and viewing pornographic material in the IT infrastructure. He/she might also attempt to steal

or modify (in a fraudulent way) commercially sensitive information. In this latter case, an insider

misuser is likely to execute or attempt to install unauthorised software. Finally, the third most likely

offensive act originating from a legitimate user might be the inappropriate use of electronic mail

facilities in order to produce unsolicited communication to other parties (inside or outside) the

organisation. Other offensive acts such as computer virus implantation, physical vandalism of

computing equipment are less frequent. The profile of an insider threat was also refined by indicating

that sophisticated users are more likely to misuse an IT infrastructure than less IT-literate users.

Finally, most professionals believe that a legitimate employee‟s reasons for leaving previous jobs

should be clarified.

 66

This survey also revealed less frequently perceived ways of misusing an IT infrastructure, with insiders

that use the computing resources in non productive ways or over-utilising them to the extent they might

introduce service degradation or even service failure. What is also worth noting is that the extent to

which these less conventional situations are considered as a misuse act greatly varies amongst different

types of organisations. These points were not shown clearly in previously mentioned surveys and

they clearly indicate the complexity of the insider IT misuse problem.

However, the survey has not managed to quantify the financial impact of the insider misuse problem.

The majority of the respondents have chosen to respond to the question of whether they faced

substantial revenue losses but they did not quantify their losses, in order to give a more accurate picture

of the financial implications of the problem. Consequently, we do know that the majority of those who

faced mostly insider problems also encountered financial implications, but we do not know their true

magnitude.

Another area for which safe conclusions could not be derived was that of accidental insider misuse.

Chapter 3 of the thesis argued that the borders between external and internal incidents were fuzzy.

There were only three cases attributed to accidental insider misuse in this survey. The number of

samples in this case was statistically insignificant to draw safe conclusions. In addition, for the number

of respondents that faced external incidents, it is impossible to say whether internal users did

accidentally played a substantial role in the case.

Nevertheless, the insider profiling information derived from this survey is a useful insight into the

nature of the insider IT misuse problem and an important milestone for the thesis. At the time of

writing, there was no other publicly known source that could provide data with similar level of

relevance to the insider IT misuse domain as this effort did. These data are going to be used in the

following chapters, in order to build the foundations of the Insider Threat Prediction Architecture.

 67

CHAPTER 5

A TAXONOMY OF INSIDER THREAT PREDICTION EVENTS

After the detailed definition of the Insider Misuse problem and a systematic examination of its

magnitude and level of severity (Chapter 4), this Chapter will take the research project one step further

by proposing a bespoke taxonomy of Insider Threat Prediction factors. The specification of such a

taxonomy is an important milestone for this project because it will enhance the ability to examine the

problem in a more systematic way and will eventually contribute to the establishment of an Insider

Threat Prediction Model (ITPM). The derivation of this model will contribute to further Insider Misuse

research and development efforts around the world. At the time of writing, there are no known tools

that systematically estimate the level of insider threat.

However, the derivation of a suitable ITPM scheme requires a structured approach that will identify a

suitable set of threat indicator factors and provide a suitable function that quantifies them. Latter

paragraphs of this chapter will present and criticize relevant research efforts in the legitimate user

misuse classification. It is important to prove that none of them meets the needs of systematically

performing Insider Threat prediction.

5.1 An overview and critique of existing Intrusion Specification Taxonomies

The Intrusion Detection Systems research community has developed various approaches for

systematically classifying intrusion incidents. Legitimate user misuse is considered a special case of an

intrusive activity. Hence, it is useful to review and criticize existing intrusion classification approaches.

Furnell et al [65] provide an overview of these research efforts. In particular, there are three widely

recognised Intrusion Taxonomies:

- SRI Neumann-Parker Taxonomy [66]: Peter Neumann and Donn Parker developed an

intrusion taxonomy based on a large number of incidents reported to the Internet risks forum.

The taxonomy classifies intrusions into nine categories, according to key elements that might

indicate a particular type of incident. Figure 5.1 summarises the overall scheme.

- Lindqvist and Jonssen's intrusion taxonomy [67]: This effort could be considered as an

extension of the SRI Neumann-Parker taxonomy. It further refines security incidents into

 68

intrusions, attacks and breaches. It examines these issues from a system-owner point of view,

based on a number of laboratory experiments. The results of these experiments indicated a

need for further subdivision of the Neumann-Parker classes 5, 6 and 7, as shown in the second

table of Figure 5.1. Their work provides further insight into the process of spotting aspects of

system elements that might indicate an intrusion.

- John Howard's security incident analysis [68]: Largely driven from empirical conclusions,

this PhD thesis study is focused on the method of attack, rather than classification categories.

It establishes a link through the operational sequence of tools, access, and results that connects

the attackers to their objectives.

NP 1 EXTERNAL MISUSE Nontechnical, physically

separate intrusions

NP 2 HARDWARE MISUSE Passive or active hardware

security problems

NP 3 MASQUERADING Spoofs and Identity changes

NP 4 SUBSEQUENT

MISUSE

Setting up intrusion via

plants,bugs

NP 5 CONTROL BYPASS Going around authorised

protections/controls

NP 6 ACTIVE RESOURCE

MISUSE

Unauthorised changing of

resources

NP 7 PASSIVE RESOURCE

MISUSE

Unauthorised reading of

resources

NP 8 MISUSE VIA

INACTION

Neglect of failure to protect

a resource

NP 9 INDIRECT AID Planning tools for misuse

Extended NP5 CONTROL

BYPASS

Password attacks, spoofing

privileged programs, utilizing

weak authentication

Extended NP6 ACTIVE

RESOURCE

MISUSE

Exploitation of write

permissions, resource

exhaustion

Extended NP7 PASSIVE

RESOURCE

MISUSE

Manual browsing, automated

browsing

Table 5.1: The SRI Neumann-Parker Taxonomy and its extensions by Lindqvist and Jonssen

Howards‟ work was one of the earliest efforts to analyse various types of intrusive activities that

occurred on a wide scale. Although it cannot be considered as a pure taxonomy, the wealth of statistical

analyses and the various cases mentioned provides some of the most well-written and useful material

for considering/revising new taxonomies. Thus, it has historical significance as a source of systematic

recording of cyber attack methodologies.

 69

The Neumann and Parker taxonomy was the first generic systematic effort to classify intrusive

activities. One interesting observation is that it is resource centric, focusing on the intrusion

consequences at system level. However, the taxonomy provided unclear borders of distinction amongst

the various intrusion categories. For example, if someone manages to bypass the authentication

mechanisms of a system, it is not clear when the incident should be classified at NP 5 (Control Bypass)

, NP 3 (Masquerading) or even both. Although it is perfectly acceptable for an incident to comply with

more than one taxonomy class, the whole purpose of a taxonomy is to provide a set of classification

criteria that reduce the vagueness amongst the various classes to an absolute minimum. Clearly, this is

not the case with certain aspects of the Neumann-Parker taxonomy.

Lindqvist and Jonssen tried to address these inaccuracies by extending the list of classification criteria

with more specific taxonomy rules, focusing on the mechanism employed to achieve a successful

intrusion. Although this does not constitute a radical modification of the Neumann Parker

methodology, it certainly helps a person to classify an intrusive activity when the method of attack is

known, reducing the ambiguous nature amongst the various NP categories.

All of the previously mentioned taxonomies describe generic intrusions, without focusing on issues that

are specific to insider IT misuse. However, there have been research efforts addressing specifically the

problem of legitimate user misuse, each with particular shortcomings as discussed in the following

paragraphs.

Chapter 3 mentioned Anderson‟s [33] discussion of 'masqueraders', 'misfeasors' and 'clandestine'

users. However, Anderson's distinctions are considered too simplistic for the purposes of assessing

insider threat: It is good to indicate the failures of authentication systems, as well as the allocation of

privileges, but that is not enough information in order to classify the various ranges of legitimate user

misuse acts discussed in Chapters 3 and 4 of the thesis. Moreover, Anderson‟s scheme contains no

traces of trying to establish a clear notion of how someone can estimate Insider Threat.

A more recent and comprehensive reference to an insider taxonomy is given by Tuglular [69]. This

taxonomy integrates an established security policy to the process of classifying computer misuse

 70

incidents in three dimensions: incident, response and consequences. These dimensions can be divided

into additional sub-dimensions that further classify a particular misfeasor.

Tuglular's suggested taxonomy is certainly an important step in systematising insider misuse

classification. First of all, the usage of a dimension-orientated classification method is really useful, not

only for controlling the granularity of information presented in each insider class, but also in

developing an appropriate set of functions that systematically collect evidence for counterintelligence

purposes. Tuglular introduces a complex table format containing information about an insider incident

and suggests that this scheme could be best utilised when implemented with a Relational Database

Management System.

Finally, Tuglular‟s paper is one of the first to suggest a „target-type of threat‟ association as a way to

prevent insider misuse. The target is an „asset‟ and the rule is called a „strategy‟ in the taxonomy

language. The suggestion is mentioned in a single sentence and forms the basis for this research work.

However, no further expansion of this concept could be found in the description of the taxonomy.

Tuglular‟s taxonomy is oriented towards insider incident response, rather than focusing on a set of

classification criteria that could be used as threat evaluation factors. It assumes that an act of legitimate

user misuse has already taken place. The goal of this project is to derive a taxonomy that relates to facts

prior to the occurrence of a misuse incident.

However, the most important criticism of the previous taxonomies is not related to their potential

inaccuracies or ambiguities they exhibit. Most research and development efforts in this field are at an

early stage and such inaccuracies or inconsistencies are always inevitable. Although the previously

mentioned taxonomies are indeed useful for the systematic study of intrusions, they offer little help to a

process designed to automatically detect intrusive activities. This is because the classification criteria

employed by these taxonomies cannot be qualified or quantified very easily by an Intrusion Detection

System with the level of information they exhibit.

 71

Moreover, none of these taxonomies is tailored for the process of estimating the likelihood of Insider

Threat. The best way to illustrate why this is the case is by considering an intrusive scenario in the

following paragraph.

A d isgrun t led head syst em ad m in ist rat o r w ho has just b een f ir ed and d ecides t o

t ake revenge b y d isrup t ing t he IT in f rast ruct ure is a t yp ical scenar io o f IT m isuse.

As a know led geab le insid er , he/she b yp asses t he syst em aut hen t icat ion

p roced ure and cor rup t s (and d oes no t d elet e ent irely) cer t ain vit al d at ab ase f iles

in o rd er t o d isrup t im p or t an t services. In ad d it ion , t he f ir ed syst em

ad m in ist rat o r also d elet es t he d at ab ase b ackup cop ies and t hen covers up h is

act ions b y erasing syst em log f iles.

Although the previous taxonomies would have one or more intrusion categories that could characterise

the entire incident, none of those categories could be important information for an IDS engine. The fact

that an authentication procedure was bypassed (NP5 in the Neumann Parker taxonomy) and there was

an active resource misuse (NP6) does not say a lot about the true intentions of the insider. Tuglular‟s

taxonomy could also classify the incident according to the target (database files) but again that

information could not be exploited fully by the IDS engine, unless more specific information about the

exact nature of the file modifications is given.

If someone wants to use an IDS to detect and predict the previously mentioned activity, one has to

represent events at a more system-specific level, looking at the various individual actions that achieved

the result. The next section is concerned with the derivation of a suitable intrusion taxonomy scheme,

in order to achieve this goal.

 72

5.2 A proposed Taxonomy of Insider Misuse Threat Prediction Factors

The best way of enhancing the expressiveness of an intrusion taxonomy scheme for insider misuse

activities is to focus on the human actions and how their consequences impact the elements of the IT

infrastructure that are being targeted. The idea is that it is easier to detect which particular element is

affected by a potentially intrusive action, rather than focusing on the task of sensing the origin, entity or

the motives for initialising an attack.

Another important property of a suitable Insider IT misuse prediction taxonomy is the freedom of the

security architect to choose what can be considered as an Insider IT misuse threat indicator. Most

taxonomies enforce a rigid framework for classifying phenomena with clear borders of distinction that

offer little space for subjective or varying interpretation of facts. This schema does not fit the case of

Insider IT misuse prediction. Chapters 3 and 4 indicated that there are different views for what is

considered as legitimate user misuse amongst the various organisations. Consequently, there are also

different views for what is perceived as a legitimate user prediction threat indicator and a taxonomy

tailored for the needs of a threat prediction process should be flexible enough to accommodate this fact.

A suitable Insider Misuse taxonomy scheme was presented by Furnell et al [70]. One then has to

consider this taxonomy carefully and then modify it appropriately, in order to introduce the classified

IT misuse prediction factors.

Figure 5.1: Misuser classification by system role

The human centric element of the infrastructure is justified by the fact that it is people who design, use

and attack the systems [71]. There are also other factors that influence the nature of an IT misuse act,

such as the derivation and enforcement of a suitable information security policy and the level of

technological complexity employed inside a corporate infrastructure. Nevertheless, all actions that

 misusers

 System role

 Reason of misuse

 System consequences

 System masters

 Advanced users

 Application users

 73

constitute IT misuse lead back to human factors. Thus, a fundamental aspect of an insider misuse

taxonomy should be the classification of people in three basic dimensions: system role, reason of

misuse and system consequences (Figure 5.1).

'System role' is concerned with the actual (or perceived) role of a particular person with reference to a

specific computer system (workstation, server, telecommunication system). The basic criterion for

classifying persons in the system role dimension is the type and level of system knowledge they

possess. Earlier chapters of the thesis argued that insiders constitute a greater level of threat than

outsiders because of the greater level of knowledge they posses about critical components of the IT

infrastructure. We have also seen from the Insider Misuse Survey (Chapter 4) that the respondents

perceived that the level of user sophistication can be an important indicator of potential insider threat.

Hence, it makes sense to use the level and type of knowledge of a particular legitimate user as a threat

estimation criterion. As a result, we classify insiders in three basic classes:

 System masters: This class includes all legitimate users of the system that have full

administrative privileges to the majority of the system resources and they clearly have

excellent knowledge of various IT infrastructure components. Typical examples are head

system and network administrators. This category of legitimate users poses a substantial level

of threat to a corporate infrastructure because of the increased level of access and trust they

are given.

 Advanced users: This sub-dimension includes all legitimate users of the system that have not

got increased administrative privileges but do possess a substantial knowledge of the system

internals. Application and system programmers, database administrators, as well as previous

system masters and current shift operators belong to this category. These people are also very

likely to misuse computer systems. Although they do not have access to a large number of

system resources, they are aware of potential system vulnerabilities.

 Application users: This includes the rest of the system legitimate users that utilise certain

standard applications, such as World-Wide-Web (WWW) browsing, e-mail and database

clients. They usually have no additional access to resources, other than the ones required to

run their application.

 74

Another important factor that characterises the nature of insider misuse incidents is the reason they

occur (reason of misuse). On the basis of this thought, misfeasor acts can be divided into two large

categories: intentional and accidental. This classification is also employed by [33], emphasizing the

importance of considering unintentional misuse incidents as equally important threats to accidental

ones

Intentional misfeasor cases are performed for a variety of reasons. The best way to sub-divide them is

to consider the motives in a way that could detect the ultimate goal of the abuser. It might be inferred,

for example, that a legitimate user is trying to access or maliciously modify important data (data theft

and data alteration), take revenge against a particular person or an entire organisation (personal

differences), or deliberately ignore a particular regulation of the information security policy. The latter

sub-dimension includes all goals that have not been stated and acts as a mechanism of

expanding/matching the suggested taxonomy to a specific information security policy.

Figure 5.2: Classification of misusers by reason

On the other hand, accidental computer system misuse can be further categorised according to the real

reasons that led the legitimate user to the wrong action. Issues such as inadequate knowledge of the

system (due to lack of training for example), factors that can affect work-related performance

(excessive workload, emotional problems) have not been addressed adequately and constitute a fruitful

 Intentional

 Accidental

Reason of misuse

 Data theft

 Personal

differences

 Deliberate

ignorance of

rules

 Inadequate

system

knowledge

 Stress

 Genuine lack of

knowledge of

rules

 75

area of research. Finally, it is possible that a user is unaware of a particular regulation of the

information security policy. Figure 5.2 illustrates these concepts.

However, it is difficult to deduce an automated process that can distinguish between what happened by

accident and what took place intentionally. For this reason, the last dimension of our classification

('system consequences') is concerned with the way a misuse act is manifested at system level.

The classification of these consequences forms a very important foundation for the Insider Threat

Prediction Tool because it will be the basis for the establishment of its monitoring. It is also greatly

influenced by the generic architecture of a computer system. This influence is based on the following

rationale: There is a plethora of criteria that could be applied in order to evaluate insider threat. For

example, social engineering and pre-employment screening procedures (the latter was indicated by the

Insider Misuse Survey) might provide valuable information about the motives and the nature of the

misfeasor. Someone could argue that it is possible for a human resources officer to observe the social

connections of particular individuals, acting as safety measures that would flag suspicious events.

However, this type of information is often subjective- thus error prone- as well as difficult to qualify.

Hence, it makes sense (especially when building an automated threat prediction tool) to classify the

consequences in terms of criteria that can be easily detected by an automated software process. It can,

therefore, be proven that most forms of insider IT abuse (or attempt to abuse) leave certain traces in

basic components of the IT infrastructure.

Figure 5.3: Categorisation of insider IT misuse incidents according to system consequences

As a result, there are three primary levels that address these consequences (Figure 5.3). One of them

concerns issues affecting Operating System components (O/S based), the second examines threat

evidence originating from network traffic (network data), and the last concerns any modifications of

the physical (hardware) architecture of the system. These levels are not mutually exclusive. For

 O/S based

Network consequences

 Hardware

System consequences

 76

example, it is certainly possible (and common) that a particular system misuse can be traced in network

data, Operating System components and hardware configuration alterations.

Bach [72] and Richter [73] are two excellent texts that describe the generic architecture of the two

commercially dominant Operating Systems: The UNIX and the Microsoft Windows family of systems.

Despite the substantial differences in the philosophy of their design, it is interesting to note that the

core modules of a UNIX or Windows kernel provide (amongst others) two important functions:

filesystem and memory management. A large number of security faults [74] involve filesystem and

memory management issues. Hence, it is safe to assume that these two kernel functional attributes can

be used as a strong criterion for further classifying legitimate user activities.

Figure 5.4 illustrates the File-system manipulation related hierarchy of insider misuse actions. At

File/Directory level, a misuser may attempt to read or alter (write/create) certain files. These files might

contain sensitive or unauthorised information (information theft or fraudulent modification of vital

information).

A knowledgeable insider might also attempt to read or modify file information that is not directly

related to its content. Bach and Richter emphasize that most Operating Systems allow a file to contain

additional information such as access/creation/modification times as well as information that relates the

file to its owner and permits access to it under certain conditions. Although the mechanisms that

implement these file attributes are different amongst Operating Systems, they are collectively known as

file metadata and they are vital mechanisms to secure the privacy, availability and integrity of the file

contents. Consequently, they are good candidates for exploitation by a legitimate user who is about to

perform a deliberate or accidental misuse act. The previously discussed Leeson Iguchi case is a classic

example of intentional alteration of vital database files.

 77

Figure 5.4: Insider Misuse Incidents classified by Filesystem manipulation OS consequences

The points mentioned in the previous paragraph are also valid for „filesystem‟ related data. Every

Operating System organises its files and directories by means of a specific set of rules that define how

a file (contents and metadata) are about to be stored on the physical medium. The Operating System

sub-modules that handle these issues are known as filesystems. Attempts to read or alter the physical

medium‟s Master Boot Record (MBR), intentional or accidental modification of partition table data are

some of the most notable auditable actions that could point to legitimate user misuse acts. Robert

Hanssen‟s case is a classic reminder of this kind of activity. His specially modified 40-track floppy disk

was created by a set of filesystem modification actions, in order to create a hidden area to store the

sensitive information.

In addition to filesystem content and metadata modification, the Insider Misuse Survey in Chapter 4

showed that excessive disk space consumption is perceived as a problem for many of the respondents.

File-system

manipulation

Filesystem

operations

Overutilising

Altering

metadata

diskspace

I/0 capacity

MBR

partition table

Reading

metadata

MBR

partition table

File and Directory

operations

Reading

Alteration

Content

metadata

Content

metadata

private/

unauthorised

private/

unauthorised

 78

Under certain conditions that depend on the configuration of the IT infrastructure, a legitimate user

might produce a deliberate or accidental Denial Of Service attack (DoS), either by exceeding a set of

disk quota rules or running intensive filesystem Input/Output computations. At the time of writing,

there were no high-profile cases documented by Information Security surveys or the mass media that fit

this description. However, Appendix D contains a case study from a production-grade UNIX system,

where a single malicious user managed to halt the operation of the box. In addition, the survey data

together with the existence of disk quota rule mechanisms and filesystem benchmarking tools on server

Operating Systems serves as a good indicator that the problem is frequently encountered in the daily

operation of IT infrastructures. This is the reason why the proposed taxonomy has devoted a separate

category for this type of event.

Figure 5.5: Memory manipulation OS consequences

While the filesystem provides useful insights about the actions that could indicate a potential for IT

misuse acts, an equally interesting picture of insider threats could be drawn from observing the

Memory

Manipulation

Program

Execution

System

Specific

Application

Specific

O/S based

System calls

Authorised

Unauthorised

Irregular Memory

Usage

Program

Installation

System

Specific

Application

Specific

O/S based

System calls

Authorised

Unauthorised

Overutilisation

Access

restricted areas

 79

Random Access Memory (RAM) of the system. The reason is simple. Every time an application is

executed, a substantial part of its contents (program instructions together with user supplied runtime

data) are transferred to RAM, where the execution of that application takes place. The „Memory

Manipulation‟ sub-category examines how actions related to potential misuse acts could be categorised

in terms of observable system memory events (Figure 5.5).

Memory inspection is the best way to see if a legitimate user attempts to run or even install a suspicious

program, a problem that was highlighted by the data of the Insider Misuse Survey. The usage of

unauthorised programs is a serious issue that can also create a way for accidental misuse by introducing

a number of system vulnerabilities, as described by Papadaki et al [16]. The execution or installation

of these programs could be intercepted by either recognising a program‟s footprint in memory or by

intercepting a well-known series of system calls produced by various suspicious programs. For

example, the fact that a non-advanced user is trying to compile an advanced vulnerability scanning tool

is an event that should be noticed and serve as a good indicator of potential misuse activities that are

about to follow.

In addition, attempts to consume large memory portions of an operational system that are related to a

legitimate user account can serve as good indicators of (intentional or accidental) insider misuse at

Operating System level. One might argue that the „irregular memory usage‟ sub-categories should

really belong under the „Program execution‟ hierarchy of events. However, it is possible that someone

will produce a quick and easy Denial of Service attack on a running system by forcing the host to

commit large portions of system memory to a process, as demonstrated in various case studies

described in [75]. Moreover, a large category of security faults can be achieved by means of accessing

normally restricted memory areas, creating what is commonly known as a “buffer overflow” attack

[76]. As a result of these issues, it was felt that a separate sub-category hierarchy should exist to

describe these events.

 80

Figure 5.6: Insider Threat Prediction Factors based on Network Consequences

Network-related operations are another distinct factor that could be taken into consideration, in order to

classify insider misuse threat indicators. Figure 5.6 illustrates the network-related consequences of acts

that could be used as legitimate user threat indicators.

The Insider Misuse Survey indicated that a large number of IT professionals consider web page content

that a legitimate user visits as an important Threat Indication factor. Hence, it is reasonable to assume

Network

consequences

Suspicious URLs

likely to

download

Offensive

material

likely to

download

illegal

software

Vulnerable

network protocols

Based on

UDP

Based on

TCP

Network over-

utilisation

Downloading

over X

Mbytes of

data in a

time period

Y

Using a

network

burst rate

over X Mbits/

sec

Using over a

certain

number of

network

endpoints

Suspicious SMTP

traffic

Mail to

suspicious

addresses

Suspicious

attachments

 81

that URLs that contain a „promising‟ link to sexually explicit content or to illegal software downloads

should be noted as distinct ways of indicating potential to misuse the system (suspicious URLs).

Network packets that are associated with certain legitimate users and indicate the usage of a variety of

network protocols and applications that might introduce certain vulnerabilities are also distinct ways of

accidental or intentional IT misuse. For example, it could be said that a user that utilises the TELNET

[77] protocol to login to a multi-user system is more likely to have her account compromised than a

user who logins via the Secure Shell (SSH) application [78] due to the fact that the earlier application

transmits the user password in clear-text form across the network, whereas the latter one encrypts it.

Thus, it is true to say that the TELNET user represents a higher level of threat to the system than the

SSH user.

Someone might also like to differentiate between TCP and UDP based applications/protocols. From a

potential threat point of view, UDP services are less secure than TCP based ones. It is out of the scope

of this thesis to discuss the reasons for deriving this conclusion. Ziegler [79] discusses in detail how

UDP‟s lack of flow control and state mechanisms can create various data security problems.

Consequently, the distinction between the usage of UDP and TCP services can serve as a potential

insider misuse threat indicator, on the basis that UDP services are more likely to be accidentally (or

intentionally) abused by a legitimate user.

The Insider Misuse Survey (Chapter 4) participants indicated that resource over-utilisation is an

existing issue in IT infrastructures. Although the „Filesystem Manipulation‟ subcategory of the

taxonomy indicates ways with which disk storage capacity can be misused, the results of over-

utilisation can also affect network capacity. For instance, a legitimate user could start downloading

massive quantities of data, exceeding the network bandwidth cost budget of a business (Downloading

over X Mbytes of data in a period Y). The X and Y number limits can be selected by the network

administrator according to the company budget requirements.

In addition, a legitimate user might also cause network congestion by exceeding the data network‟s

„burst‟ or throughput capacity or exhausting the number of available network endpoints, as described in

 82

Sharda [80]. Bandwidth hungry applications such as video streaming players and multiple data

transfers can cause congestion that can severely impact the performance of a data network or affect the

Quality of Service (QoS) of certain applications that require sustained data network throughput.

Finally, incoming or outgoing SMTP headers or attachments might indicate activity related to e-mail

misuse that can certainly be traced in network or host level. Outgoing e-mails that contain a set of

particular files as attachments (password database files, other sensitive material) and have unusual

destination addresses (unknown hotmail accounts, a large number of recipients) should serve not

necessarily as intrusion indicators but as insider threat estimators.

The last system consequences category (“hardware”) plays an important role in preventing a number of

computer system threats. Insiders can often access the physical hardware of the machine very easily.

Thus, removal or addition of hardware components, as well as modifications of their default

configuration are some important events that may act as important indicators of insider misuse

prediction in a computer system.

5.3 Conclusions

This Chapter introduced a suitable taxonomy of Insider Threat Prediction Factors, based on system-

level events associated to legitimate user actions. The taxonomy is tailored to the needs of automated

Insider Threat Prediction because:

- It is heavily based on factors that are easily qualified by a system.

- It is flexible enough to allow the security architect to define what is considered as a threat

element. For example, he could define which user network protocols are more likely to pose a

threat to the system when they are utilised by a particular legitimate user. This is a necessary

requirement because what can be considered as legitimate user misuse varies amongst

different organisations.

The establishment of this classification scheme paves the way for the construction of a suitable Insider

Threat Prediction Model presented in the following chapter of the thesis.

 83

CHAPTER 6

MODELING THE PROCESS OF INSIDER THREAT

PREDICTION

After introducing a suitable Insider Misuse taxonomy, this Chapter presents the details of a mechanism

that aims to probabilistically estimate the level of legitimate user threat. After clarifying important

terminology and examining relevant research efforts, the establishment of suitable threat qualification

and quantification criteria is presented. The derivation of the criteria is also supported by experiments

that monitored certain aspects of the legitimate user behaviour on a production-grade computer system.

This is another important milestone of the research project that provides the foundation for the process

of insider threat prediction.

6.1 On model derivation methodology

This Chapter uses the term „model‟ many times. In the field of Computing, the term „model‟ is

extensively used as part of Software Engineering practices. The aim of these practices is to make the

process of producing software more efficient and reliable. However, Software Engineering modelling

has many potential attributes. It is useful to clarify which of its aspects are employed in this thesis and

what has been excluded.

A model is a special representation of a real-world entity as a set of attributes and functions that closely

resembles its behaviour. Sommerville [81] defines a model as an “abstraction of the system being

studied rather than an alternative representation of that system”. The process of abstracting a real-world

entity implies that not all information about its attributes and functions is transferred into the model.

Only those attributes and functions important for the study of certain aspects of the entity are

considered. Consequently, the first important step of deriving an Insider Threat Prediction Model is to

decide which attributes and behavioural (functional) characteristics of a legitimate user are important to

the Threat Estimation Process. This will produce a set of Insider Threat Qualification Attributes

(ITQAs).

The next step in the process of establishing the model is to describe how the ITQAs can be quantified,

in order to estimate the level of insider threat per individual user. This will involve the establishment of

 84

a suitable mathematical function, which will take as input a number of ITQAs and will associate them

with a certain level of threat. We shall call this function the Estimated Potential Threat function, which

quantifies the ITQAs.

At this point, the overall target of our model will be achieved: the establishment of a mechanism that

will map ITQAs to certain threat levels. However, a formal Software Engineering modelling process

does not stop here. There is a plethora of modelling techniques that can define the model‟s data format

(semantic data modelling [81]), as well as the reliability of the model functions (formal methods [81]).

The thesis has omitted those formal aspects of Software Engineering based modelling, since the goal of

the research project was to produce the design for a proof-of-concept system, rather than a production

grade system.

6.2 Previous Insider Threat Modeling efforts

The development of insider threat models is a relatively new idea. Wood [82] provides an excellent

basis for qualifying a set of metrics to mitigate insider threat. Most of these criteria are in line with the

conclusions derived by the Insider Misuse Survey, as well as issues discussed as part of the insider

misuse taxonomy presentation in Chapter Five of the thesis.

In particular, Wood suggests that a malicious insider can be qualified in terms of distinct attributes:

 Access: The insider has unlimited access to some part or all parts of the IT infrastructure and

the ability to physically access the equipment hardware. Consequently, the insider can initiate

an attack without triggering traditional system security defences.

 Knowledge: The legitimate user is familiar with some or all the internal workings of the

target systems or has the ability to obtain that knowledge without arousing suspicion.

 Privileges: The malicious insider should not have problems obtaining the privileges required

to mount an infrastructure attack.

 Skills: The knowledgeable insider will always have the skills to mount an attack that is

usually limited to systems that he/she is very familiar with. The model assumes that a given

adversary is unlikely to attack unfamiliar targets.

 85

 Tactics: This attribute refers to the methods used to launch the malicious attack. They are

dependent on the goal of the attack and might include a variety of scenarios such as plant-hit-

and-run, attack-and-eventually run, attack-until-caught as well as passive information

extraction acts.

 Motivation: Insiders might launch the attack for profit or sabotaging the target organisation.

Some of them might mount an attack for personal reasons such as taking revenge against the

enterprise or even satisfy their plans to invoke some policy change inside an organisation.

 Process: The model assumes that a legitimate user follows a basic predictable process to

mount an attack that consists of distinct stages. First the malicious adversary will become

motivated to mount the attack. The next logical stages involve the identification of the target,

the planning of the attack and finally the act of mounting the attack itself.

All of the previously mentioned attributes emphasize important aspects of the insider misuse problem.

Previous Chapters of the thesis have presented comments on the importance of insider attributes such

as role, knowledge and privileges. A very useful comment with respect to the Insider Threat

Estimation modelling comes from the process attribute. The fact that Wood characterises an insider

attack as a „predictable‟ process is a positive sign for the goal of this project.

However, Wood‟s criteria do not necessarily represent a clear picture for the establishment of an

insider threat prediction model. Not all stages of an insider attack can be safely predicted. Some of the

previously mentioned attributes are difficult to qualify by an Intrusion Detection System. The

„motivation‟ adversary attribute is one of them.

It is very difficult to establish a set of sensors that could reliably deduce when an individual becomes

motivated to misuse a system. For instance, let us suppose that IDS sensors record that a commercially

important file is transferred from a disk to an external storage medium in the early morning hours. The

fact that this particular file transfer took place could be related to a malicious act or an innocent file

backup process performed by the system administrator as part of a system recovery process. It is

important to maintain a record of these types of events, but their existence does not necessarily indicate

an insider misuse event in progress. The plethora of the potential origins of such an event would

 86

increase the amount of information to be evaluated. Consequently, the complexity of the algorithms to

capture and evaluate this type of information would deem this attribute‟s exploitation impractical. At

the time of writing, there is not a known algorithm, which is able to capture and evaluate that kind of

information in existing Intrusion Detection Systems.

If someone observes the different stages of the „process‟ insider-modelling attribute, it becomes clear

that the closer we get to the actual attack itself, the stronger the indicators of insider threat. Although

detecting motivation might be tricky, with a carefully chosen quantification scheme of ITQAs,

someone could sense an adversary during the target identification and attack planning stages.

In addition, other attributes seem to be so closely related that might be redundant. For instance, it

would be more logical to combine the attributes of „access‟ and „privileges‟ into one „insider access

rights‟. The issue of obtaining a privilege to mount an attack should include logical and physical

means of interacting with the systems. The same could be said for the attributes of „knowledge‟ and

„skills‟, because the ways in which a legitimate user gets to know a system and what can be inferred

from the insider‟s system knowledge are issues that are closely interrelated.

Due to its introductory scope, Wood‟s paper [82] does not deal with the quantification of insider threat

attributes. It is unknown whether this means that a suitable threat modelling function has been deduced

as part of the preliminary model mentioned in this paper. The author has yet to publish a completed

version of the model for verification.

A more recent research effort by Schultz [83] presents a preliminary framework for understanding and

predicting insider attacks by providing a combination of behavioural and system usage ITQA metrics.

The paper mentions the detection of system usage patterns that may act as “signatures” of a legitimate

user or certain indicators of an attack preparation (“deliberate markers” and “preparatory behaviour”).

Legitimate users might also make noticeable mistakes in the process of misusing a system (meaningful

errors). Finally, “correlated usage patterns” refers to sequences of actions that might not be detected in

individual systems but they could certainly indicate misuse when considered against multiple systems.

 87

Schultz also suggests that certain aspects of a legitimate user‟s personality could serve as threat

indicators. In particular, on-line (e-mail, IRC or other forms of computerised human-to-human

communication) verbal behaviour with signs of aggression, dominance towards particular people might

serve as a good prognosis factor of certain attacks (“verbal behaviour”). Furthermore, based on the

works of Shaw et al [71], the research suggests that it is possible to examine other “personality traits”

as potential threat indicators.

The Schultz preliminary framework even suggests a way to quantify all these metrics by means of a

multiple regression equation that consists of the summation of the ITQA metric variables multiplied by

their weightings. If X1, X2, X3… XN represent the quantified ITQA metrics, Wi (i=1, i=N) their

respective weights and C an arithmetic offset constant, then the expected estimated threat Xe is derived

below:

Xe = (Σ WiXi) +C = W1.X1 + W2X2 + W3X3 + …+ WNXN + C

One notable absence of the Schultz insider threat prediction scheme is that there is no direct association

between the estimated level of threat and the legitimate user‟s level of technical knowledge. Although

the proposed metrics can provide evidence that could be used to infer the level of user sophistication,

there is no mentioning of a mechanism that takes that into consideration. Given the fact that, at the time

of writing, the field of Insider Threat modelling is premature to reveal any usable results, it is difficult

to prove the real impact of user sophistication on the threat level. On the other hand, Wood‟s model, a

number of case studies mentioned in Chapter 3 and the Insider Misuse survey results (Chapter 4)

provide strong indications that there is a direct relationship between these two concepts. In that sense,

the lack of a legitimate user sophistication gauging component could present a serious omission of the

Schultz framework.

In addition, the exploitation of future mechanisms that will associate personality traits to potential

misuse threat levels raises certain ethical and feasibility concerns. It is outside the scope of the thesis to

examine ethical issues and the various laws that are associated with them. Nevertheless, the process of

designing a model that is going to be employed in the real world should take into consideration its

troublesome aspects. A metric that penalises real people in terms of their character traits will be

 88

considered unethical by many and depending on regional legislation may be also unfeasible to

implement.

In summary, the Schultz framework is more refined than Wood‟s earlier Insider Threat model in that it

provides more concrete examples of ITQA metrics as well as a basic quantification mechanism for

them. However the framework is still in its infancy. The author acknowledges that the chosen metrics

need further refinement in order to prove their usefulness in a threat estimation process.

Both models concentrate on malicious (i.e. intentional activities) without considering accidental insider

misuse actions. This can be a serious omission for a model that aims to address all aspects of the

insider threat issue, as the problem of accidental insider misuse does exist and can have serious

consequences, as shown in the Norwich Union Case [59].

Finally, all of the aforementioned research efforts do not address the issue of managing the

representation of the data that feed the model component functions. One could argue that a preliminary

model design needs to focus more on the scope, quality and quantity of its insider threat modelling

functions. On the other hand, a well-thought definition of the procedures that represent and store the

data that feed the threat modelling functions may have a notable impact on the computational

efficiency and acceptance of the model. The reasons that support the need for this requirement are

going to become apparent in the sections that follow, as well as in Chapter 7 of the thesis.

For all these reasons, we need a more formalised and broader model description. The next sections of

this Chapter provide a detailed description of the proposed Insider Threat Prediction Model.

 89

6.3 The Insider Threat Prediction Model

After discussing the various advantages and disadvantages of similarly minded research efforts, this

section will present an Insider Threat Prediction Model that attempts to overcome the shortcomings of

previous research work. A preliminary version of this model has been published by Magklaras and

Furnell [70].

Considering a legitimate user population that has access to various components of an IT infrastructure,

the core of the Insider Threat Prediction Model is a three-level hierarchy of mathematical functions

evaluated in a bottom-up approach. At the top level, the Evaluated Potential Threat (EPT) function

provides an integer value that quantifies and classifies the potential threat for each legitimate user into

three different categories. If x denotes the computed EPT for a legitimate user, EPT_MAX a threshold

EPT value for considering the user a threat and EPT_MIN a threshold EPT value for considering the

user‟s on line presence as suspicious, then:

 Important internal threat (x ≥ EPT_MAX): It indicates a high potential of a particular user

misusing the system.

 Suspicious (EPT_MIN ≤ x < EPT_MAX): This flags a condition where a particular user

behaves in a manner that does not constitute a substantial threat but it is still a concern.

 Harmless (0 ≤ x < EPT_MIN): To indicate that the potential of misuse is nearly non existent

for a particular user.

It should be emphasized that the derived EPT value is an integer that represents a measure of the

likelihood of system misuse, ranging from 0 to 100 points. Higher EPT scores indicate more probable

threats. However, it should be noted that the model equations presented in this Chapter do not represent

a validated probabilistic model. Since EPT represents likelihood of Insider IT misuse occurrence, one

would expect the formulae to map a series of data to a probability figure. Although this is the aim of

the model, in addition to the EPT function, one would then have to carefully relate the derived EPT

score to the fact of whether the event really occurred or not. This comparison would facilitate the

construction of proper probability distribution function, which relates a range of data to a probabilistic

 90

value of incident occurrence. As a result, the reader should be aware that there is a difference between

the EPT score and an actual probabilistic figure.

Each of the threat component functions models particular aspects of insider attributes and behavior. At

the moment, in order to devise a well structured organisation of threat components, the suggestion is to

provide two threat component functions. The first one considers legitimate user attributes such as

access rights and professional role, whereas the second evaluates potential threat simply by examining

aspects of user behavior at the system level. Figure 6.1 illustrates the proposed formula.

EPT = FITPQA

EPT = Fattributes + Fbehavior

EPT = Crole+Faccessrights+Fbehavior (1)

Figure 6.1: The three-layer ITPM function hierarchy

It is envisaged that Fbehavior has a greater weight in the process of calculating the user EPT than Fattributes.

Legitimate user attributes are important and should always be taken into consideration. However, it is

expected that amongst two users that have the same attributes, it is the gauging of their behavioral

characteristics that can decide which one is more likely to constitute a greater level of threat for the

system. Hence, a total of 30 points will be contributed to EPT by Fattributes and 70 points by Fbehavior.

 In addition, Table 6.1 lists the maximum weights of the nine top-level EPT formula components that

are explained in detail in latter sections of this chapter. Some of these components are constants

(Crole, Csysadm…etc) that belong to the Fattributes function, whereas others constitute sub-functions of

the Fbehavior function that address the assessment of the legitimate user on-line behavior.

The sum of the weights adds up to 100. This corresponds to a probability range of 0%-100%. The

derivation of the defaults maximum values is a consequence of the aforementioned ratio between

Fattributes and Fbehavior. Due to the initial choice of weights between the Fattributes and Fbehavior functions, the

5 constants of Fattributes have a maximum score of 6 points, contributing a total score of 30. The rest of

 91

the EPT components, should total a score of 70 points attributed to Fbehavior. Fsophistication attributes

10 of these 70 points and the rest of the sub-functions can score a maximum of 20 points each.

Consequently, the default values preserve that ratio and attribute almost equal weights for each sub-

function component.

EPT Component Maximum Weight Meaning

Crole 6 What is the documented role of

the user inside the organization?

Csysadm 6 Has the user access to Operating

System administration utilities?

Ccriticalfiles 6 Is it meant for the user to access

commercially sensitive files?

Cutilities 6 Can the user execute application

critical utilities?

Cphysicalaccess 6 Has the user physical access to

critical parts of the IT

infrastructure?

Fsophistication 10 How capable is the user in terms

of his computer system

knowledge?

Ffileops 20 What are the signs of

forthcoming insider misuse at

file-level?

Fnetops 20 What are the signs of

forthcoming insider misuse at

data network level?

Fexecops 20 What are the signs of

forthcoming insider misuse at

program execution level?

Table 6.1: EPT component Weight Matrix

 92

It should be emphasized that the proposed maximum weights on table 6.1 are not meant to be fixed. A

system administrator/security specialist can re-define the maximum weights, in order to reward a

particular metric that he trusts more than the others. For this reason, the nine weights of Table 6.1

constitute the Weight Matrix, a very important parameter for the ITPM system. The Weight Matrix

allows a specialist to further tune the sensitivity of the model, depending on the way he constructs

misuse signatures, his confidence on the various metrics and the nature of the incident he is trying to

predict. This feature enhances the adaptability of the proposed model scheme.

6.3.1 Modeling legitimate user attributes

The Fattributes function examines particular user characteristics associated to their role and level of access

inside the IT infrastructure. Crole represents an arithmetic constant associated with the role of the user in

an IT environment. The Insider Misuse Prediction taxonomy of Chapter 5 (Figure 5.1) discussed three

possible categories of users with respect to their IT role inside the organization: „System masters‟,

„advanced users‟ and „application users‟. As discussed in Chapter 5, system masters and advanced

users will be more likely to misuse the IT infrastructure than application users. This fact should be

reflected in the arithmetic value assigned to this constant. Thus, the following set if inequalities should

always hold true:

Crolesystemmasters > Croleadvancedusers > Capplicationusers.

Faccessrights is a nested function that associates threat levels to file, application and physical access rights.

Earlier chapters of the thesis discussed real world cases where certain files were manipulated with

certain applications. It is hence logical to assume that an important threat indicator is whether access to

these files or applications is provided to a particular user by default. For example, when a legitimate

user has access to a database file that contains all the infrastructure system accounts or a Word

Document that contains the latest commercial secret of a company, he/she would have more chances of

inflicting a serious attack than a user that does not have the authority to access these files.

The same could be said for the right to execute certain applications. A user that has access to

applications such as database manipulation tools, password cracking programs or other system

administration related utilities should rank high in a threat estimation process.

 93

Finally, Chapter 5 discussed also access to physical hardware as an insider misuse threat indicator. The

fact that some users can physically enter a server room where servers, backup media and network

access points are located should also be taken into account by an insider threat prediction tool.

Consequently, there needs to be a direct association of files, applications and physical locations to

certain levels of threat. The security administrator will have to clearly identify these points and rank

them according to their level of importance. These thoughts are reflected by the following equation in

Figure 6.2.

Faccessrights=Csysadm + Ccriticalfiles + Cutilities + Cphysicalaccess (2)

Figure 6.2: Faccessrights formula

The association can be achieved by devising a set of arithmetic constants to indicate certain facts to the

threat prediction process. Csysadm represents the fact that a user has access to Operating System

administration files (both executables and configuration files). Ccriticalfiles is set when a legitimate user

has access to one or more commercially sensitive files.

Cutilities is a constant that indicates access to administration utilities of third party applications, as

opposed to Csysadm which is concerned with OS level utilities. The reason this distinction is made is due

to the fact that many critical applications employ their own authentication system to control certain

operations, in addition to the Operating System authentication mechanisms. A characteristic example

of an application that meets these criteria is a Relational Database Management System (RDBMS). For

example, the MySQL™ RDBMS [84] is a popular product that employs a “root” or “Administrator”

account, in order to control database contents and operations. This account is often not related to the

underlying OS Administrative accounts. This means that an ordinary OS user could have full control of

the Database operations. If this database controls vital data, such as a company‟s funding, employee or

payroll applications, access to these facilities needs to be indicated by additional flags to the threat

estimation process.

 94

Finally, the physical access part is accommodated by the last constant Cphysicalaccess that indicates

physical access to critical servers, backup media locations and network access points (places where

wiring panels, switches or routers are placed).

Most of the previously mentioned associations have to be done manually by the security officer or

system administrator(s). As a result, the Faccessrights function represents a relatively static element of the

threat prediction process, expressing some essential initial attributes of the legitimate user. The same

cannot be said about the Fbehaviour function. Designed to associate the user on-line actions with the

potential of IT misuse, the character of this function is much more dynamic than the one of Faccessrights

and is presented in the next section.

6.3.2 Modeling the legitimate user behavior

Modeling the behavior of legitimate users is viewed as a process that has two distinct components. One

of them relates to the technical aptitude or sophistication of the user. The Insider Misuse Survey of

Chapter 4, as well as the Insider Misuse case studies of Chapter 3 indicated that user sophistication was

viewed as an important indicator of potential threat. The second aspect of this modeling effort concerns

what the user actually does on a live system. Chapter 5 of the thesis proposed a taxonomy for Insider

Misuse Threat Prediction and concluded that misuser actions could be traced at file, memory and LAN

data levels. Consequently, Fbehavior can then be defined below.

Fbehavior=Fsophistication + Ffileops + Fnetops + Fexecops (3)

Figure 6.3: The Fbehavior component sub-functions

It can be argued that the technical aptitude of the user can be viewed more like an attribute rather than a

behavioral characteristic and thus it should belong to the Fattributes function. In the traditional sense of

the word „attribute‟, the competency of an individual is part of his/her attributes. However, an

automated process can only determine this attribute by examining the behavioral patterns of the user.

Moreover, technical aptitude is a dynamic characteristic that evolves over time. Although the

experiments of the thesis have not looked into the evolution of user sophistication over time, it is

 95

reasonable to assume that users gain experience and hence their technical aptitude increases over time.

As a result, the measurement of user sophistication does not fit the static character of the Fattributes

function. For a group of users that have the same documented role and system access rights over a

period of time, the technical aptitude amongst them varies. This is shown in the sections that follow.

For these reasons, it was felt that user sophistication should be part of Fbehavior instead of the Fattributes

function.

6.3.2.1 Modeling user sophistication

Fsophistication provides a mechanism to profile every legitimate user in terms of his/her level of technical

sophistication. The process of establishing the metrics for classifying users according to their level of

technical knowledge involves gauging essential elements of their on-line behavior and then

establishing a pattern that can clearly distinguish between advanced and non advanced users.

The idea of modeling end user sophistication is not a new one. Evans and Simkin [85] have produced

early studies on measuring sophistication, amongst Computing Professionals and Computer Science

students. Their study tried to identify how competence in Computer Programming can be correlated to

factors such as age, gender and a range of other individual differences. However, their effort focused

only upon computer professionals. A generic End-User Sophistication model should address a much

broader user base, not only professionals and students of the IT field. Nevertheless, Evans and Simkin

were one of the first to consider technical aptitude (in this case computer programming ability) as an

End-User Sophistication parameter.

Huff et al [86] have systematically attempted to produce a more generic model of end user

sophistication. Their paper discusses how end user sophistication could be evaluated for the purposes

of increasing the efficiency of human resource management inside an organization. The scope of their

work is clearly outside the field of Intrusion Detection. However, their conclusions can be utilized in

order to craft suitable algorithms that gauge user sophistication.

 96

Huff et al conducted interviews on 31employees from 8 different organizations. The interviews had a

semi-structured nature, asking the subjects to fill short questionnaires and talk about their experience

on particular IT issues. The questions ranged from summarizing the software tools they use on a daily

basis, how much training they had undertaken on these tools and what were the perceived difficulties

they had faced with these IT applications. The results were collected and analyzed by the authors and

an additional panel of Computer Science Academics.

The result of this analysis was the formulation of an „End User Computing (EUC)‟ sophistication

model that classified users in terms of three important attributes:

- Breadth of knowledge: Their findings indicate that advanced users were able to employ a

greater variety of IT tools than intermediate or novice ones.

- Depth of knowledge: The level of mastery of a particular IT sub-domain or application

(gained either by extensive training or hands-on experience) is proportional to the level of user

sophistication.

- Finesse: The ability of a user to solve particular IT problems in efficient and innovative ways,

given a certain level of breadth and depth capability is also an end-user sophistication

classification metric.

The authors do not provide a structured methodology of how exactly they measured the „finesse‟

attributes of users. Although the way (tools and their combination) of solving a series of problems is a

reasonable metric of the end user abilities, it would be difficult to devise standardized tests for an

automated IDS algorithm on a live system. Consequently, someone may focus on the breadth and depth

dimensions of EUC sophistication.

Prior explaining how the aformentioned concepts could be turned into a workable model, it is

important to mention for reference purposes that the experiment described in this section uses the

following Weight Matrix values:

(6,6,6,6,6,12,18,18,20)=(Crole,Cdata,Chardware,Csysadm,Cutilities,Fsophistication,Ffileops,Fexecops,Fnetops)

 97

Thus, Fsophistication contributes a maximum of 12 points to the EPT value.

In order to devise a metric for measuring the breadth of knowledge, if n represents the number of

unique applications executed by a particular user per session and c the number of sampled user

sessions, then:

avdiffapps = Σni/c , (i=1->i=c) (4)

Figure 6.4: Breadth of knowledge formula

This scheme will reward more points to users that execute on average a greater variety of tools. In

order to dimension the avdiffapps values to fit in the proposed scales of the ITPM scoring scheme, it is

necessary to consider the average values of avdiffapps for each user category. If μ represents the

arithmetic average of avdiffaps for every user category, then:

Fbreadth = 6, if (μordinary < x ≤ μadvanced) OR (μordinary < x AND x ≥ μadvanced)

Fbreadth = 3, if μnovice < x ≤ μordinary

Fbreadth = 1, if 0 < x ≤ μnovice

(5)

Figure 6.5: Fbreadth function based on the avdiffapps value

Huff et al [86] claim that “depth capability has much to do with mastery of the features and functions

of different types of application systems, practices, techniques etc”. In order to inspect these parameters

on a working system, one has to devise mechanisms for checking:

I) The type of applications utilized on average and rate them in terms of the level of system

knowledge they require in order to be used.

II) The way each of these applications is called and used by considering issues such as way

of execution (scripted versus manual) as well as number and type of arguments.

 98

In order to realize the requirements of mechanism I, one has to define a one-to-one association between

an application program and a score that indicates the level of system knowledge required to use this

particular application. The greater the knowledge required, the greater the score. Thus, applications

could be classified in three broad categories: Applications requiring advanced knowledge of the system

(system masters) scoring a total of 3 points, applications that indicate advanced knowledge of the

system that worth 1.5 point and finally applications that require the absolute minimum level of

sophistication for 0.75 points. Then, the arithmetic average of all the sampled application scores of a

particular user could serve as a suitable quantification mechanism for this ITQA.

Hence, if Fappscore indicates a function designed to gauge the level of sophistication for a particular user

in terms of the type of applications she invokes, then:

Fappscore=Scoreapp1+Scoreapp2+Scoreapp3+…+Scoreappn / n (6)

where n=number of recorded used applications for a user

Figure 6.6: Associating the executed application with a sophistication score

In order to satisfy the requirements of mechanism II, a set of application monitoring criteria has to be

devised, in order to associate the usage of a particular application to a user sophistication level. This is

a non-trivial task to achieve for a number of different reasons that are outlined below.

Novice user: Experienced UNIX User:

56 ls 131 smbstatus | grep moamar* | grep –I eudora

57 cat myfile.txt 132 ls –lta showlogs*.log.gz

58 vi myfile.txt 133 gunzip showlogs01*.log.gz

59 vi myfile2.txt 134 grep –i ^Nov showlogs01*.log | grep –v

60 ls myfile2.txt authorized>novemberhits.log

61 cd records/

62 ls

63 cat myfile2.txt

Figure 6.7: Shell command invocation between novices and experienced users

For command-line based applications (such as UNIX shell or Windows Command Prompt programs),

the way an application is started can be used to provide an indication of the level of knowledge of a

 99

legitimate user. Figure 6.7 displays two sets of UNIX shell commands. The commands were drawn

from excerpts of the UNIX command line history file of two users. The first one shows commands that

originate from a novice UNIX user, whereas the second one originates from the shell history file of an

experienced UNIX user.

The excerpts shown in Figure 6.7 indicate some fundamental differences in the application invocation

process between experienced and novice UNIX users. Apart from the difference in the command

vocabulary size discussed on earlier paragraphs, it is evident that advanced users tend to call

applications with a larger number of arguments and options. For example, when considering the usage

of common commands such as “cat” and “ls”, novice users tend to use “cat” as a command to list the

contents of files. However, experienced users tend to employ it more along the lines of its original

inception which is about concatenating file contents. The end result is an increase in the number of

arguments passed on the command line.

Similar conclusions could be deducted for the number of command line optional flags, in order to

modify the default behavior of the command. In the above excerpt, the experienced user invokes the

“ls” command with additional arguments, in order to sort certain files according to their creation date.

In contrast, novice users employ the command to just list the contents of their working directory, which

is the default behavior.

Another important observation that distinguishes advanced users from novices is the employment of

extensive I/O redirection features. The shell history command list for experienced users indicated

approximately three times more frequent usage of command line pipes and other I/O output redirection

features than the equivalent one for novice users.

Based on the previously made observations, command sophistication signatures could be devised, so

that a certain sophistication score could be allocated for every invocation of the command. However,

this technique has a certain number of disadvantages. An obvious one is concerned with the fact that

the list of system commands as well as their respective argument options can grow easily. Producing

(and also maintaining) a number of signatures for every command would be a non trivial task. The

 100

level of difficulty is also enhanced due to the fact that there are substantial differences in the command

amongst different Operating Systems, or even amongst different hosts that run the same type of

Operating System.

However, the most important drawback is concerned with the fact that the technique would not be

useful for Graphical User Interface applications. Most modern Operating Systems such as Windows

2000/XP, MAC OS X, as well as UNIX/LINUX desktop systems use primarily graphical applications

that are executed in standard ways, without leaving enough data for user sophistication classification.

The profiling of user actions in a Graphical Environment would require some element of software re-

engineering of the application in order to mark the events that can be used as sophistication metrics

Although the thesis is not concerned with pioneering IDS computational efficiency mechanisms or

application-level monitoring frameworks, it is important to produce a pilot Insider Threat Prediction

Model that could be used easily in a live system. Thus, for all the previously mentioned reasons, the

employment of command line argument parsing and system call tracing is considered computationally

expensive for the purposes of gauging user sophistication.

In an attempt to discover alternative metrics of user sophistication, the following paragraphs discuss the

implementation details and the detailed numeric results of a survey that monitored 60 UNIX users in

the National EMBnet Node, a scientific center located at the University of Oslo in Norway. The sample

contained three categories of users that were pre-classified in terms of their documented professional

role. Hence, the sample included:

- Advanced users: Includes system administrators and scientific personnel with substantial

programming knowledge (software engineers, computer science and bioinformatics academic

personnel) that have been users of the system for more than two years.

- Ordinary users: Scientists that had been using the server facilities for a minimum of 12 and a

maximum of 24 months.

- Novices: Students who have recently attended an introductory course for using the UNIX

system or users that have been using the system for less than twelve months.

 101

 Advanced Ordinary Novice

Arithmetic mean 26 9.85 3.25

Standard Deviation σ 8,813864676 2,033275812 1,118033989

Figure 6.8: Average percentage of RAM utilisation

 Advanced Ordinary Novice

Arithmetic mean 30,9 10,95 3,95

Standard Deviation σ 7,98617226 3,316228041 1,959457497

Figure 6.9: Average percentage of CPU utilisation

RAM resource impact

0

10

20

30

40

50

60

A
v

e
ra

g
e

 %
R

A
M

 u
ti

li
s

a
ti

o
n

Advanced Users

Ordinary Users

Novice Users

CPU resource impact

0

10

20

30

40

50

%
C

P
U

 u
ti

li
s

a
ti

o
n

Advanced Users

Ordinary Users

Novice Users

 102

The participants employed a series of generic applications, such as email and word processing

programs, as well as specialized bioinformatics utilities such as the EMBOSS application suite [87],

BLAST [88] and a variety of programming language interpreters and compilers.

There were an equal number of participants from all categories. A number of different metrics was

employed, in order to verify both the breadth and depth of system users. All the results were collected

by examining Operating System shell-level commands, as well as system resource utilization metrics

obtained by standard Operating System utilities. A total of 20 „sessions‟ per user were employed to

collect the amount of data. In this Chapter, the term „ user session‟ refers to all the commands and

system resource impact indicators collected from the moment a user logs in until the time he logs

out. This includes data from multiple user shell sessions. The numbers were then averaged, in order

to make certain conclusions about the different user categories.

 Advanced Ordinary Novice

Arithmetic mean 13,7 6,95 3,3

Standard Deviation σ 3,096687534 1,571958216 0,923380517

Figure 6.10: Average number of simultaneous applications per user session

The first important conclusion was that the level of user sophistication was proportional to the CPU

and RAM utilisation. Advanced users on average consumed approximately three times more CPU and

RAM than ordinary users. Advanced users also appeared to consume on average approximately ten

Number of simultaneous apps

0

5

10

15

20

25

N
u

m
b

e
r

o
f

a
p

p
li
c

a
ti

o
n

s

Advanced Users

Ordinary Users

Novice Users

 103

times more of these resources than the novice users. Figures 6.8 and 6.9 illustrate the distribution of

values for these two metrics for all user categories.

The same conclusions could be deducted by looking into the number of applications used

simultaneously (per user session) for the three user categories. In particular, the most sophisticated

users employed on average twice as many simultaneous applications as the ordinary users and four

times the average amount of simultaneous applications of novice users. Figure 6.10 summarizes these

findings.

Combining all three of these metrics rather than using one of them is an essential action, in order to

increase the reliability of the user sophistication gauging. This particular experiment provided mostly

clear borders of distinction for all three user categories. However, in figures 6.8 and 6.10, small

undesirable overlaps amongst different user categories can be observed. For instance, the RAM

resource impact graph indicates an overlap between the Advanced and the Ordinary users category.

The fourth sampled Advanced User value is well below the fourth Ordinary Users metric value. A

greater degree of overlap can be also observed in Figure 6.10, between the Advanced and Ordinary

Users as well as the Ordinary and Novice user groups.

A different applications environment could potentially increase the overlap of these metrics amongst

the different user categories, making the process of user classification difficult. Consequently, even if

we combine the CPU, RAM and number of simultaneous application metrics, we could not use their

recorded maximum and minimum values. In an attempt to prevent this classification overlap problems,

all three of these metrics are considered in the Fresutil function, a mechanism that gauges user

sophistication using these metrics, based on the recorded arithmetic average of these metrics. Then,

Fdepth would have the following form:

Fdepth= Fappscore + Fresutil

Fdepth=(Scoreapp1+Scoreapp2+Scoreapp3+…+Scoreappn / n) + SCPU + SRAM + SSIMAPPS

(7)

Figure 6.11: The assessment of the legitimate user’s depth of knowledge

 104

SCPU, SRAM and SSIMAPPS represent the scores allocated for the measured CPU RAM and simultaneous

applications metrics. However, prior assigning the raw values for SCPU, SRAM and SSIMAPPS in equation

(7), a refinement of these metrics is also necessary, in order to smooth out the derived values and aid

the process of eliminating the aforementioned overlaps. For each of these variables, if μ represents the

arithmetic average of each metric for every user category, and x the recorded value of a metric per user,

Figure 6.12 displays a set of equations that perform the necessary refinement.

SCPU = 1, if (μordinary < x ≤ μadvanced) OR (μordinary < x AND x ≥ μadvanced)

SCPU =0.5, if μnovice < x ≤ μordinary

SCPU = 0.1, if 0 < x ≤ μnovice

(8)

SRAM = 1, if (μordinary < x ≤ μadvanced) OR (μordinary < x AND x ≥ μadvanced)

SRAM = 0.5, if μnovice < x ≤ μordinary

SRAM = 0.1, if 0 < x ≤ μnovice

(9)

SSIMAPPS = 1, if (μordinary < x ≤ μadvanced) OR (μordinary < x AND x ≥ μadvanced)

SSIMAPPS = 0.5, if μnovice < x ≤ μordinary

SSIMAPPS = 0.1, if 0 < x ≤ μnovice

(10)

Figure 6.12: Refinement formulae for SCPU, SRAM and SSIMAPPS

The Fsophistication values derived by the equations (7)-(10) are plotted in Figure 6.13. The graph indicates

no overlap amongst the three user categories. One can now observe more clearly the borders of

distinction amongst the different user categories. Hence, it is assumed that the combined application

and refinement of metrics in this manner improves the reliability of the user sophistication gauging

process. In this particular experiment, the results indicated that advanced users achieve an

Fsophistication score that ranges from 10 to 11.9 units, ordinary users are placed in the range of 5.4 to

9.7 and novice users scores were measured in the range of 1.4 to 4.7 points. The results indicated no

instances of user misclassification.

 105

Figure 6.13: The distribution of Fsophistication values

Consequently, a methodology could be derived that would allow an automated process to classify users

in terms of their level of sophistication. The first step of this methodology can be achieved by selecting

a user sample which contains an equal number of users from each sophistication level. The next step

involves the process of training the model by measuring repeatedly the metrics for people of the same

category, in order to establish minimum and maximum Fsophistication values for each user

sophistication level. These values can then be used for subsequent measurements of new users, in order

to gauge their level of sophistication and they are specific to the number and type of applications of a

particular computational environment.

If the initial sample user categorization according to the user‟s documented role and experience is false,

the model will yield inaccurate results. Therefore, the entire procedure requires intervention from

experts for the purposes of validating the training user sample. Moreover, because Fsophistication refers to

specific computational environments, if new applications are installed on the target system, the

function will require re-sampling of the training values, in order to function correctly. These two

limitations represent two important weaknesses of the method. These weaknesses increase substantially

the setup administration overhead of the method in today‟s fast evolving IT infrastructures.

Nevertheless, the Fsophistication component function represents a novel experimental approach that

did provide accurate classification results in the experiment.

Derived Fsophistication Values

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0
S

o
p

h
is

ti
c

a
ti

o
n

 S
c

o
re

 (
0

-1
2

)

Advanced Users

Ordinary Users

Novice Users

 106

This step concludes the qualification and quantification of metrics suitable to measure legitimate user

sophistication.

6.3.2.2 Modeling user actions by monitoring file and network operations

The fifth Chapter of the thesis presented an Insider Misuse oriented taxonomy based on a number of

system level detectable consequences. It was then argued that file and network level operations could

be employed as a mechanism for revealing Insider IT misuse acts (Figure 5.5 and Figure 5.7). Based

on these initial thoughts, it is possible to construct pattern matching signatures describing user file and

network operations that would indicate the signs of forthcoming misuse incidents.

Driven mainly by the proposed Insider Misuse Prediction Taxonomy, a suitable file-level collection of

ITQAs should include the following metrics:

 Existence of file: The ITPM system should be able to search files owned by a particular user

that match one or more of the following criteria:

o File metadata attributes: Recognised by file name, type of file (examples .exe,

.mp3, hidden folder or system file) or special file attributes (whether the file is

executable, read only, etc).

o File contents: The files contain certain content that should be detected at various

data type levels, depending on the file encoding format (ASCII, UTF versus binary

format) and the type of information that the system attempts to intercept.

o File size: Sometimes, it is easier to intercept file-level evidence if we know the

exact size of the file. There are plenty of examples of malicious code or improper

content that contain files of certain type and constant size.

 Access of file: The fact that a particular user accesses a specific file in certain ways should

also serve as an ITQA in the ITPM system:

o File access time: When a particular file is accessed might be important

o Access mode: Whether the file is accessed in real-only or read-write mode.

 User area space consumption: Previous chapters elaborated on aspects of accidental misuse

related to over-utilisation of system resources. It should be possible to compare the user

overall space consumption in relation to:

 107

o A pre-set limit set in the system (often referred to as user disk quota).

o The overall storage capacity of the disk where the user area resides.

o The disk consumption of the previous user session, so that the rate of increase of

disk space consumption can be established. Moreover, if currutil represents the

disk utilisation at the end of the current user session and prevutil the disk

utilisation at the end of the previous user section, the ratio currutil/prevutil

represents the required metric. The calculated ratio should then be compared

against a threshold ratio value to indicate whether the user disk consumption is

growing alarmingly fast.

o The existence of certain file types, so for instance it is possible to see if most of the

hard disk space is occupied by file types that are unauthorised.

It should be noted that the „existence of file‟ as well as the „access of file‟ attributes hold true for

directories. In fact, in most widely employed Operating Systems, directories are special files that act as

containers for holding files [72, 73].

Following a similar line of thinking for network operations monitoring, the following set of ITQA

metrics should be available to the ITPM system.

 Existence of user related network connection on the host: The ITPM system should be able to

evaluate potential threats from one or more the following network endpoint attributes:

o Source IP address: Employed to evaluate inbound host network connections

associated with a particular user.

o Destination IP Address

o Transport Protocol employed (UDP versus TCP)

o Source and destination port number employed.

o Application Payload contents match (optional facility): The ability to match a series

of bytes located in the payload area of the Protocol Data Unit (Figure 2.6). This is

designated as an optional attribute mainly due to the performance impact it might

have on a busy computational environment. Computer microprocessors are getting

faster but technologies such as Gigabit Ethernet and the ever increasing

 108

computational demands of modern desktops create serious performance overheads in

network-based intrusion detection systems [19]. Consequently, having an attribute

that requires interception of network data at great speeds is not a good idea in terms

of efficiency and reliability.

 Network resources consumption: A series of ITQA metrics employed to address the extent of

the likelihood of a legitimate user over-utilizing the networking subsystem of a host.

o Number of connections employed: The number of host network connections

associated with the user in relation to a threshold value. The establishment of a

network connection requires the allocation of computational resources such as special

kernel data structures [72,73]. There are a finite number of these data structures and

their exhaustion could seriously affect the proper operation of a system.

Consequently, the threshold value should always be a fraction of the total number of

network endpoints that an Operating System can allocate.

o Total number of Mbytes exchanged (sent and received) in relation to a threshold

quota value (again in Mbytes) for all network connection associated with the user

during a single user session.

o Number of Mbytes exchanged per user connection (sent and received), in relation to

a threshold quota value (in Mbytes) during a user session.

o Rate of increase of the Total number of Mbytes exchanged (sent and received) in

relation to the total number of Mbytes of the previous section.

The reader should note that the proposed network-connection specification addresses the Transmission

Control Protocol/Internet Protocol (TCP/IP) [89] network system implementations. There are

computing systems that run different network protocols such as bespoke implementations of the Open

Systems Interconnect (OSI) [90] or the Systems Network Architecture (SNA) [91] family of protocols.

However, these protocols are associated exclusively with older computer equipment and they are rarely

encountered in new computing installations. TCP/IP is now the ubiquitous standard. As a result, the

proposed ITPM network-level operations specification has ignored OSI, SNA and other more

proprietary networking architectures.

 109

6.3.2.2.1 File and network operation specification statements

After drawing the file-level ITQA list, the next step is to combine them together, in order to describe a

range of particular file operation scenarios. This can be achieved by means of suitably encoded

statements. The statements could act as the basis of a system-orientated signature construction

mechanism that produces separate signatures for file and network operations. The constructed signature

could then act as a pattern matching mechanism intended to intercept (in combination with other

indicators) insider threats at file system and network level. The syntax and the rules of combining these

statements are presented on the following paragraphs.

The general encoding format contains a statement file operation indicator such as „existsf „ and a series

of ITQA attributes that identify further the object(s) of the operation. The ITQA attributes are separated

by colons (:) and square brackets indicate optional parts of the statement. Curly braces indicate

optional nesting of statements, something which is discussed in latter paragraphs. Finally, whenever a

single wildcard (*) character is assigned to an ITQA attribute, it forces the statement to be considered

against all the possible attribute values.

The statements can be combined together using four logical operators and control blocks indicated by

parentheses as illustrated in Fig. below. This schema gives the signature mechanism the ability to

define complex file and network-level events. The NOT operator negates the meaning of the entire

parentheses block, whereas the AND/OR/XOR operators are used to define combinations of statement

conditions according to their boolean algebra meaning [92] (Figure 6.14).

([NOT] (Statement 1 AND/OR/XOR (Statement 2 AND/OR/XOR Statement 3))) AND/OR/XOR

([NOT] (Statement 4 AND/OR/XOR (Statement 5 AND/OR/XOR Statement 6)))

Figure 6.14: The structure of file/ network operation specification statement

This logical operator scheme can also be employed in the definition of indicated ITQA attributes, in

order to enhance further the expressiveness of the statements. Hence, the generic structure of a discrete

file/network-level signature is presented below:

 110

([NOT]((statementoperator1:<[NOT]((attribute1value1[OR/AND/XOR/]attribute1value2>):[<att

ribute2>]…{nestedstatementoperator1:…})[/OR/AND/XOR](statementoperator2:<attribute1val

ue2>….)))

Type of

statement

Statement Syntax Example

Existence of

files

existsf:<filename>:[<filetype>]:[<readflag>

:<writeflag>:<execflag>:<suidflag>]:[<cont

ents>]:[<size>]:[<nooffiles>]:[<location1,

location2,…>]

existsf:<*mutella*>:<tar OR

tar.gz>:<s>:<u>:<s>:<u>:<$HOM

E,/usr/src>

Explanation: Find a user owned file of

type tar or tar.gz that contains the string

mutella as part of its name, has the read

and execute flags set for the user and if

it is not under the user‟s home directory,

it might also be under the user home or

/usr/src directories.

Existence of

directories

existsd:<dirname>:[<readflag>:<writeflag>

:<execflag>]:{existsf:<filename>…:<size>[

OR][AND][XOR]existsf:<filename>…}:[<l

ocation1, location2,…>]

existsd:<*mutella*>:<s>:<s>:<s>:

{existsf:<mutella>:<binary> AND

existsf:<AUTHORS>:<asciitext>:

<contains:Mutella Project>}

Explanation: Find a directory with the

approximate name mutella, that has

read, write and execute permissions for

the user. This directory should also

contain (amongst other) two files: one

binary called “mutella” and one ascii

text called “AUTHORS” which has the

string “Mutella Project” in its contents.

Table 6.2: File-level existence statements

In order to further illustrate the previous complex expression starting with file-level operations, Table

6.2 summarises the syntax for encoding file operation existence statements. The „existence ITQA‟

operation indicators („existsf‟ and „existsd‟) are concerned with the presence of certain files and

 111

directories in the user‟s home area or elsewhere. The <filename> and <dirname> attributes specify the

name of the entities in question. It should be noted that when the name of the files cannot or need not to

be precise, these attributes can act as regular expressions by inserting wildcard characters at the

beginning and end of the <filename>/<dirname> string values. This allows the statement to act on a

variety of potentially threatening files and directories.

This is also true for the <contents> attribute that aims to match certain file payloads that could be

deemed as indicators of forthcoming misuse threat. The attributes (<readflag>, <writeflag>,

<execflag>) are optional components that relate to what permissions the user has in relation to the

entity he is trying to access. Their purpose is to refine the file entity selection criteria as much as

possible.

The <size> and <nooffiles> parameters of the „existsf‟ statement are integers. The earliest ITQA states

the size of the file or directory entity in megabytes, whereas the latter <nooffiles> defines a threshold

value of files that meet the criteria of the „existsf‟ statement. Lastly, the search for files that satisfy the

ITQA criteria is performed by default on the user‟s home area. However, some of the files in question

might be located outside the user home area. In these cases, the <location1, location2,…> optional

attribute might be employed, in order to define a number of locations (absolute path), where the search

can also take place.

Table 6.3 displays the syntax for the „accessf‟ and „accessd‟ statements. They address the current list of

files and directories the user is trying to access. The <accesshourrange> attribute is an optional

component that indicates if files are accessed within a suspicious range of hours, and hence addressing

specifically malicious alteration or theft of information.

 112

Type of

statement

Statement Syntax Example

Access of file accessf:<filename>:[<accesshourrange>]

:{existsf: <filename>…:[<location1,

location2,…>]>[OR] [AND] [XOR]

existsf:<filename>…:[<location1,

location2,…>]}

accessf:<*.doc>:<04-

06>:{existsf:<*>:<doc>:</storage/p

rototypes>}

Explanation: match all files being

accessed between the hours of 4 and 6 in

the morning that are of type *.doc and

reside under the /storage/prototypes

directory.

Access of

directory

accessd:<dirname>:[<accesshourrange>

]:{existsf:<filename>…<location1,

location2,…>]}

accessd:</storage/prototypes>:<04-

06>:{existsf:<*>:<doc>}

Explanation: Match any access to the

directory /storage/prototypes that contains

one or more word documents, between the

hours of 4 and 6 in the morning.

Table 6.3:File and Directory access statements

The „Filesystem over-utilisation‟ statements are designed to handle the problem of disk space over-

utilisation, as shown on Table 6.4. The „checkrelq‟ statement examines how much of the disk space

quota the user has utilised. <percent-util> is an integer (1-100) that expresses a disk space per-cent

consumption threshold in relation to a pre-defined limit in Mbytes (<quota>). When the user‟s disk

consumption exceeds that threshold, the statement becomes true and hence a part of the event that is

described by the file-level signature produces a match. In contrast, when a user quota is not defined,

checks could be made against the entire disk partition where the user area resides (checkdskq

statement). In that case, <dlimit> expresses the size of the disk/partition in Mbytes. This would be

useful to address situations such as the one described in Appendix D of the thesis, when disk quotas are

not enforced on computer systems.

 113

Type of

statement

Statement Syntax Example

User relative

quota check

checkrelq:<percentutil>:<quota>

checkrelq:<75>:<2048>

Explanation: Has the user consumed

three quarters or more of his 2 Gigabyte

quota?

Disk quota

check

checkdskq:<percentutil>:<dlimit>

checkdskq:<50>:<40960>

Explanation: Has the user exceeded half

of the 40 Gbyte disk/partition?

Disk

consumption

per file type

check

checkfiletypeq:<filetype>:<percentutil>:<

quota>

checkfiletypeq:<mpeg OR avi OR

wmv OR mpg OR

mp3>:<50>:<2048>

Explanation: Has the user exceeded half

or more of his 2Gbyte quota on

multimedia files?

Rate of disk

consumption

increase check

Checkdiffq:<threshold_file_quota_ratio>:

<quota>

Checkdiffq:20:<2048>

Explanation: Did the user quota

consumption utilisation grow by 20% or

more in relation to the previous user

user quota utlisation, when the quota is

set to 2Gigabytes?

Table 6.4: Filesystem over-utilisation statements

The „checkfiletypeq‟ statement is more specific and it examines disk utilisation associated to particular

file types. This type of statement would be useful in specifying threats indicated by large disk

consumption figures associated with particular file types. A good example of this situation would be a

consistent growth of user disk space consumption associated to mp3, mpeg, avi or other multimedia file

formats. When this information is combined with additional indicators (such as the presence of certain

running processes) could for example indicate the presence of unauthorised file sharing software.

The last filesystem over-utilisation statement „checkdiffq‟ examines the rate of overall disk space

consumption per user. <threshold_file_quota_ratio> expresses an indicated ratio of the current

 114

session‟s quota utlisation over the previous session quota utilisation, in order to indicate whether the

user‟s disk storage requirements are growing too fast.

Earlier paragraphs mentioned the nesting of statements inside others. This feature is desirable for

combining the file operation statements into composite expressions that increase the accuracy of the

file operation signature specification. For instance, an „existsf‟ statement may nest inside an „existsd‟

directive, in order to specify additional criteria about the files of a particular directory and hence

increase the specification capabilities of the „existsd‟ operator. This is also true for the nesting of

„existsf‟ statements inside „accessf‟, „accessd‟ and „checkfiletypeq‟ directives.

Similar encoding considerations should be taken into account for the construction of network-level

signatures. Table 6.5 provides an overview of the required network operations statements.

Type of

statement

Statement syntax Examples

Existence

statement for

network

connection

existsnet:<destination_ip/FQD

N>:<source_ip/FQDN>:<trans

port_protocol>:<source_trans

port_port>:<destination_trans

port_port>:[<payload_match>

]

existsnet:<129.240.4.5>:<www.warez.c

om>:<tcp>:< > 1025>:<80>

Explanation: Has the user visited the

www.warez.com website.

 115

Table 6.5: Network operation statements

The „existsnet‟ statement facilitates the network connection orientated threat detection. The destination

and source Internet Protocol Addresses can be defined in their numeric or Fully Qualified Domain

Name (FQDN) format (<destination_ipORFQDN> and <source_ipORFQDN>). The

<transport_protocol> and <transport_port> identifiers dictate the transport protocol employed (tcp or

udp) and the port number (integer).

The <transport_port> identifier can specify a specific port (integer) or range of ports in a number of

different ways, as shown on table 6.6 below. The last optional ITQA <payload_match> searches for an

ASCII-based keyword in the payload (data) area of the packet.

Network Quota

statements

checknetendpointq:<threshold

_number_of_endpoints>:{exist

snet:<destination_ipORFQDN

>…]}

checknetbytesessionq:<percen

tutil>:<net_quota>

Checknetdiffq:<threshold_net

_quota_ratio>:<net_quota>

Checknetendpointq:<30>:{existsnet:<

129.240.4.5>:<ftp.freemp3.org>:

<tcp>:< > 1025>:<21>}

Explanation: has the user launched 30 or

more connections to the ftp.freemp.org

server?

Checknetbytesessionq:<80>:<1024>

Explanation: Has the user utilised more

80 per cent or more of his 1 Gbytes

network quota in the current session?

Checknetdiff:<30>:<1024>

Explanation: Did the user relative net

consumption (of a 1024 Mbytes net

quota) grew more than 30% in relation to

the previous user session?

 116

Type of source/destination

transport_port specifiers

Syntactic example Meaning

Single port specification 80 Match the criteria for connections

for/from port 80 only.

Range of ports 30000-40000 Match the criteria for any port in the

range 30000-40000.

Greater than or less than i) > 1024

ii) < 1024

i)Match all ports greater than 1024.

ii)Match all ports that have a value

less than 1024.

Composite with logical

operators

80 XOR (120-150 OR 3600-

6000)

Match port 80 or exclusively

a port that belongs to the 120-150 or

3600-6000 range

not both.

Table 6.6: Transport port attribute values

The Network Quota Statements (Table 6.5) function in a way that is similar to the filesystem over-

utilisation statements. However, instead of dealing with bytes stored on a medium, the volume of

incoming and outgoing byte sequences is considered. „checknetendpointq‟ matches either a total

number of endpoint connections (<threshold_number_of_endpoints> is an integer) or a number of

endpoint connections that meet certain criteria. The latter optional functionality can be achieved by

nesting an „existsnet‟ directive inside the „checknetendpointq‟ statement, in order to focus its scope on

specific connections.

The „checknetbytesessionq‟ statement is equivalent to the „checkrelq‟ one. The <net_quota> attribute

defines the maximum total number of Mbytes (received and sent) per user session and the statement

becomes true if the current relative utilisation is equal or greater than the number quoted by

<percentutil>. Finally, „checknetdiffq‟ evaluates the growth of the relative network quota utilisation

(<threshold_net_quota_ratio>) in relation to the previous user session.

This concludes the presentation and justification of the file and network operation specification

statements. In order to demonstrate the established specification schemes and apart from the

 117

specification table examples, a step-by-step description of constructing a sample misuse prediction

signature is provided in section 6.4 of this chapter. The next subsection explains how to produce a

threat prediction value from a file/network specification signature.

6.3.2.2.2 Derivation of the Ffileops and Fnetops formulae

After the definition of the file and network statements and their respective syntactic rules, the Ffileops

and Fnetops formulae that calculate the behavioural threat components must be constructed, with

regards to equation (3) of section 6.3.2. In order to derive these formulae, one has to consider the

structure of file/network operations statement, as presented in figure 6.14. The figure shows the

structure of a single file or net operation statement. A collection of these statements statements that are

all necessary to verify the presence of a forthcoming threat constitues a specification signature:

Sfile/net=FileStatement1, FileStatement2, FileStatement3, …., FStatementn

As the ITPM system evaluates the statements, some of them are going to be true (find conditions that

match their attributes) whereas others are going to be false (not satisfy their attributes). Hence, if there

are t true statements in the signature , then the formula of Ffileops is defined in figure 6.15 and in the

same way figure 6.16 displays the Fnetops equation. Both functions are defined as the ratio of the number

of their true statements over the total number of statements of their signature multiplied by their

Weight Matrix value (Table 6.1).

Ffileops=WeightFfileops x t/n, with t≤n

n=number of statements in the signature

t=number of true statements in the signature

WeightFfileops=Weight Matrix value for Ffileops

Figure 6.15: Ffileops formula

 118

Fnetops=WeightFnetops x t/n, with t≤n

n=number of statements in the signature

t=number of true statements in the signature

WeightFnetops=Weight Matrix value for Fneteops

Figure 6.16: Fnetops formula

This constitutes a simple pattern matching mechanism, whose reliability relies essentially on the

definition of the signature. If the decomposition of the file/network threat components as signature

statements is not accurate, then the respective functions are going to be inaccurate, yielding false

positive or negative alarms.

6.3.2.3 Modeling legitimate user actions by command line signature processing

Whilst earlier discussions presented mechanisms of associating misuse threat levels to legitimate user

sophistication as well as network and file-level actions, this section will focus on the execution order of

legitimate user actions. This is an equally important aspect of the insider threat estimation process.

Section 6.2 discussed the Schultz framework‟s [83] proposed metrics of “deliberate markers” and

“preparatory behaviour”. Apart from the knowledge of user actions (file access and program

execution), these metrics imply the notion of a process, in the sense of an ordered collection of user

actions. Hence, one could encode a user session as an ordered sequence of commands, together with

their respective arguments. Figure 6.17 below illustrates this concept.

Timeref command1 arg1 arg2 … argn, Timeref command2 arg1 arg2

…argn, … Timeref commandn arg1 arg2 …argn

Figure 6.17: Ordered Shell command sequence

The „Timeref‟ is a timing indicator that records when a command was issued. This is useful when

someone wishes to correlate data (considering user data from multiple hosts) or establish whether the

 119

commands were executed by an automated script or manually by the user itself. The commandx

indicators reveal the users program execution, whereas argvx might reveal further details about the

commands and the associated file access operations.

Each of the recorded user action sequences could then be compared against a set of sequences that

contain commands of known misuse actions. The way the comparison is done is a key design feature

of an Insider Threat Prediction Model. Whilst latter paragraphs will discuss the details of the

comparison scheme, it is useful to emphasize that the problem of predicting legitimate user misuse is,

in essence, a sub-domain of sequence prediction analysis. It should be acknowledged that the idea of

analysing user command sequences for the purposes of predicting user actions is not a new one.

Lee [93] and Greenberg [94] have collected and analysed UNIX command line data and tried to

discover simple patterns of repetition in various command sets. Their results indicate that the likelihood

of repeating certain commands is quite high. However, they both encountered several problems as

individual usage patterns varied substantially, producing undesired effects in their data sets and

reducing substantially their predictive reliability.

In their attempt to enhance the adaptation of a user interface to an individual‟s pattern of use, Davison

and Hirsh [95] devised the „Incremental Probabilistic Action Modelling‟ (IPAM) algorithm. Their

algorithmic approach represents a Machine Learning method that involves the analysis of UNIX

command line data sets for the purposes of calculating the probability of future commands. The authors

employ the assumption that each command in a sequence depends on the previous one. Then, an entire

user command sequence could be modelled by counting the number of times each command x+1

followed a command x and that could determine the likelihood of going from one command to another.

Davison and Hirsh experiments included command line histories from a sample of 77 users. A total of

approximately 168,000 commands were analysed (on average 2000 commands per user), in order to

evaluate the effectiveness of the IOLA method. Since the number of sampled commands was not the

same across all users, it was necessary to include two types of performance indicators. „Macroaverage‟

results considered the predictive accuracy of each individual user and then average the figure over all

 120

users. On the contrary, „microaverage‟ results took into consideration the number of correct predictions

made across the entire user base divided by the total number of commands for all users. Based on these

assumptions, the authors reported a 39.9% macroaverage predictive accuracy and a respective 38.5% of

microaverage predictive accuracy.

Although the IPAM algorithm represents a promising approach to aid the construction of efficient User

Interfaces, it is not useful for the purposes of Insider Threat Estimation. The goal of Davison and Hirsh

was to devise a method to predict generic user command sequences, without considering Domain

Specific information. Legitimate misuse incidents require the representation of domain specific

knowledge. In addition, the IPAM algorithm ignores command line arguments, as it considers only the

execution of commands. These arguments would indicate the potential target of a misuse act, an

essential element of an insider threat estimation process.

In addition, the computational efficiency of the model could also be a concern. Davison and Hirsh have

proved the efficiency of the IPAM algorithm is greater in relation to other relevant machine learning

approaches based on statistical computations. Chapter 2 elaborated on the disadvantages of anomaly

detection in terms of computational efficiency. Misuse detection methods based on faster pattern

matching approaches could potentially offer a much more efficient approach in a threat estimation

model.

Based on these assumptions, the proposed modelling approach would opt for an efficient pattern

matching method that would take into consideration domain specific aspects and would include

command line argument data. Figure 6.17 illustrated the proposed data schema for representing the

sequence of user actions. Let δm denote a sequence representing m sampled commands (together with

their respective arguments) of a legitimate user and υn represent a misuse signature (command

sequence with respective arguments) of length n that describes a known misuse act. Assuming that

sequence un is complete (it contains all the steps required to commit a particular insider misuse act), the

similarity between these two sequences can serve as an indicator of insider threat. The more similar the

sequences, the greater the likelihood that δm represents an indication of forthcoming misuse activity.

 121

This raises the question of how the similarity between these two sequences should be evaluated. After

sampling the user commands and encoding them in the form described in Figure 6.17, it is also

necessary to associate each system command to an integer. This command enumeration step is

necessary, in order to produce a more computationally efficient sequence format. For example, if the

UNIX command „/sbin/tcpdump‟ is represented as an integer „1200‟, it will use less storage space and

will require less CPU cycles in a pattern matching algorithm than the full character string format.

Although the differences might not seem great, in large sequences that are repeated on hundreds or

thousands of users, this refinement could have a substantial impact on busy systems. In contrast, the

command arguments are not enumerated because it is not trivial to produce lists of all the possible

encoded combinations for each of the system commands. Each command operates with operands that

change all the time, as well as with options that can grow exponentially.

After these prerequisites, an algorithm can now be devised, that scores the level of similarity between a

legitimate user command sequence and a pre-constructed misuse signature. The steps of such an

algorithm are outlined below:

i) The „timeref‟ indicators are removed. They served as a way to preserve the order of

commands when data are correlated from different sources, but they are no longer needed

at this stage.

ii) Each of the the δm and υn sequence commands are encoded in the following string format:

CcommandcodeAargument1argument2…-##8#

C‟, „A‟ and „##8#‟ are standard sequence formatting strings. The numeric code of the

command lies between the „C‟ and the „A‟ strings, whereas the command arguments are

located between the „A‟ and the command termination sequence string „##8#‟. It should

be noted that any white space characters (one or more space characters or tabs) are

removed from the arguments, before they are placed in the proposed sequence format.

Many commands of the UNIX and Windows command prompt interface are insensitive to

white space. This can complicate the pattern matching process and hence white space is

removed. The end result of this step is the creation of two strings: Slegitimate which

represents the encoded δm and Ssignature which represents the encoded misuse signature.

 122

iii) The Slegitimate string is converted into an array of strings of size m (Alegitimate), where

m is the number of the encoded commands in the sequence. Each element of the array

represents a string that contains a single command of the sequence as encoded in step ii.

The same procedure is repeated for the un misuse signature sequence, in order to produce

an array of strings of size n (Asignature).

iv) The similarity between these two arrays (and hence between the legitimate user and

misuse signature sequences) is defined by the following procedure described below in

pseudo-code notation:

outer_ loop: for (i=0 i<=m i++) {

if(sizeofAsignature!=0) {

inner_ loop:for (j=0 j<=n j++) {

 if(Alegitimate[i] == Asignature[j]) {

number_of_matches++

left shift Asignature by one element

}

}

} else {

return (100 * (number_of_matches/n))

finish outer_loop}

Figure 6.18: Command sequence similarity search algorithm

In other words, the similarity between a legitimate user command sequence and a misuse signature can

be expressed as the ratio of the number of commands from the legitimate user sequence that match the

misuse signature commands over the total number of commands that describe the particular misuse

signature. Figure 2.5 of Chapter 2 provided an illustration of the temporal basis of computer intrusion

incidents. Insider misuse incidents follow an identical temporal pathway. Some initial actions pave the

way for the next steps towards the misuse act, until the insider misuse incident is complete. The greater

the number of steps matched in the order they were defined in the misuse signature, the more probable

the eventuality of a particular incident.

 123

From a computational perspective, this algorithm represents a standard element-by-element comparison

of two arrays. An array is an ordered collection of data elements which represents one of the most

widely available data structures, as it is employed by all popular high-level programming languages.

The choice of the array data structure was made because it is important to perform an ordered

comparison driven by the misuse signature command sequence. Kumar and Spafford [26] emphasize

the existence of a strict (ordered) sequence of actions as a primary mechanism for producing a

signature specification.

It is expected that the running time of this algorithm is proportional to the signature and user command

array sizes. In formal terms, theoretical algorithmic running time estimations are quoted in “big-Oh”

notation, as described by Brassard [96]. By convention, the growth rate of an algorithm‟s running time

is expressed as a function of its input size. Thus, if m and n are integers that represent the sizes of the

Alegitimate and Asignature arrays respectively, it can be shown that the worst-case scenario running

time of the proposed algorithm is proportional to the product of m and n, or that the algorithm is an

O(mxn) one.

Every element of the Alegitimate array (outer_loop) is tested for equality against every element of the

Asignature array. Every time a match is found, the matching Asignature element is disregarded and the

total number of comparisons decreases, as the size of the Asignature array is reduced (left shift

statement). Consequently, the worst case scenario is defined when no match can be found between the

elements of the two arrays. Then, the total number of comparisons can be calculated as shown below:

Number of comparisons = (m0 x n) + (m1x n) + (m2 x n) + (m3 x n) +…+(mm-1 x n)=

= n x (m0 + m1 + m2 +…+mm-1)=

= n x (m)

Appendix E (section E3) provides an implementation of this algorithm (script realtimemon.pl) using

the PERL programming language. The script was then executed a number of times, accepting a

signature of 4 commands (m=4) against various legitimate user command sequences of varying sizes.

 124

The test sequences were carefully constructed so that no match could be found between their elements

and hence simulate the worst case scenario conditions. Figure below illustrates the results of these runs

on a Pentium III 1Ghz capable LINUX Workstation with 512 Mbytes of RAM. The results of the

graphs below verify that the various aspects of the computational performance of the algorithm are

proportional to the size of its input.

Figure 6.19: Runtime versus input size

Figure 6.20: Memory footprint size versus input size

ITPM Command Sequence Comparison Runtime

Performance

0

200

400

600

800

1000

1200

1400

0-128 128-

256

256-

512

512-

1024

1024-

2048

2048-

4096

4096-

8912

Input size (mxn sequences)

ru
n

ti
m

e
 (

m
il
li
s
e
c
o

n
d

s
)

runtime

ITPM Command Sequence Comparison Memory

Consumption

0

10

20

30

40

50

60

70

80

0-128 128-

256

256-

512

512-

1024

1024-

2048

2048-

4096

4096-

8912

Input size (mxn sequences)

M
e
g

a
b

y
te

s
 o

f
R

A
M

memory

 125

Figure 6.21: Relative CPU utilization versus input size

The memory and CPU requirements were also measured. Figure 6.20 indicates that if the mxn product

addresses a number of sequences smaller than 1024, the proposed algorithm draws an amount of

memory that could be easily served by a modern desktop computer (approximately 20 Mbytes were

required when most modern desktops at the time of writing have at least 12 times that amount of

memory in RAM).

However, the same conclusion cannot be derived about the relative CPU utilisation (Figure 6.21). The

measurements were taken when 4 other processor intensive tasks were running (5 processes in

execution). In the region of 512-1024 input sequences, the relative CPU consumption was just under

10% of the CPU time, for a running time of less than a quarter of a second. At a first glance, this does

not appear to be a high CPU load, but if one considers the fact that the aforementioned utilisation figure

is associated to a single signature comparison for a single user, a different perspective becomes

apparent. Since, more than one misuse signatures will need to be examined against a single user

command sequence, then a multi-user system would require even further additional computational

resources (especially CPU time), in order to accommodate for the needs of the threat prediction

process. Consequently, it becomes apparent that this algorithm requires further optimisations, in order

to become operational in large production-grade systems. The details of such optimisations and the

factors that affect the performance of the algorithm are discussed in detail in Chapter 7 of the thesis.

ITPM Command Sequence Comparison %CPU

Utilisation

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0-128 128-

256

256-

512

512-

1024

1024-

2048

2048-

4096

4096-

8912

Input size (mxn sequences)

%
C

P
U

 o
w

n
e
rs

h
ip

%CPU

Utilisation

 126

6.4 The production of a multi-level signature

The previous sections of this Chapter explained in detail the ITPM functions and they way they encode

their data. They did not explain how all these mechanisms can be combined together to form a working

model. The combination of the ITPM component functions is presented in the following paragraphs

and will be accompanied by a discussion of how to apply the model in a specific insider misuse case.

The initial section of this Chapter explained that the purpose of the model is to associate user attributes

as well as file, network and command execution events to the likelihood of the occurrence of certain

incidents. Thus, after entering the user attributes and training the Fsophistication function, a single

signature that combines file, network and command execution threat prediction data is produced to

address a particular incident. Obviously, a certain number of incidents are going to be addressed and

hence there is going to be a certain number of signatures defined. The following algorithm then

summarises the execution of the model:

For every user that has logged in {

For every signature that has been defined for the host {

Calculate EPT score

}

}

Figure 6.22: ITPM operation scheme

It should be noted that a signature per host scheme is suggested. Although computer systems with the

same hardware and software share common properties, each host might have different users or

configuration options that will affect the likelihood of certain threats in different ways. The end result

of this operation scheme (Figure 6.22) is a series of user EPT scores associated to their respective

threat signatures, as shown in Figure 6.23. The system administrator/security specialist can then sort

the results per user, EPT value or query the results in any way he wishes, in order to monitor emerging

threats on the computer system. Chapter 7 will describe in detail the ways of organising the storage and

the query of these results.

User 1: event1EPT=a, event2EPT=b, event3EPT=c,…

User 2: event1EPT=d, event2EPT=e, event3EPT=f,…

 127

.

.

User n: event1EPT=x, event2EPT=y, event3EPT=z,...

Figure 6.23: The end result of the ITPM model

The aforementioned ITPM operation scheme requires a mechanism for combining the file, network and

command execution signatures into a single signature scheme. Figure 6.24 presents the details of this

multi-level signature scheme.

#Header

ipaddress, targetos,day,month,year

usercategory,reason,keyword1,keyword2,keyword3

WCrole,WCsysadm,WCcriticalfiles,WCutilities,WCphysicalaccess,WFsophistication,WFileops,WFnetops,WFexecops

#Fileops

FileStatement1, FileStatement2, FileStatement3, …., FileStatementn

#Netops

NetStatement1, NetStatement2, NetStatement3, …., NetStatementn

#Execops

CcommandcodeAargument1argument2…-##8#

Figure 6.24: The multi-level signature scheme

 At the header section, the signature stores information employed by the ITPM management system

such as the IP address of the host it was created for („ipaddress‟), the target Operating System platform

(„targetos‟), the date of its creation and a number of keywords related to what type of incident the

signature addresses. In particular, „usercategory‟ defines what type of users the signature refers to in

relation to their level of sophistication as defined by figure 5.2 of the Insider Misuse taxonomy. The

„reason‟ indicator can be assigned either the value „accidental‟ or the string „intentional‟, to indicate

whether the signature tries to predict non-intentional or intentional incidents. Finally, keywords 1-3

address the nature of the incident (for example “password cracking”, “proprietary information theft”).

The eight W indicators of the following line prescribe the Weight Matrix (Figure 6.1) for the signature.

The manifestation of insider misuse incidents occurs in different ways and hence the importance of

threat indicators at the file, network and command execution levels should also be different. Therefore,

it is important for the model to have the flexibility of modifying the weightings of the various

components per signature, if the signature author wishes to perform such modifications. Section 6.3

presented the default Weight Matrix for all signatures. If the default one is being used for some or all of

the weight indicators, then each of these weight indicators contains the string „default‟. In the case of a

 128

mixture of default and modified weight indicators, the only requirement is that the weights must add up

to one hundred points.

The rest of the encoding scheme contains the actual signatures for the file, network and command

execution level indicators that were explained in the previous sections of the chapter. This concludes

the explanation of the multi-level signature designs and the remaining of this section will focus on how

this scheme can be applied in the specification of example threat prediction scenarios.

One common problem of legitimate user misuse is the installation of Peer-to-Peer (P2P) file sharing

software on corporate computer systems, falling under the unauthorized software installation insider

misuse category. Although this incident category was not one of the most common ones in the Insider

Misuse survey (chapter 4), it is often linked to the sharing of pirate and pornographic material [97]. The

dissemination of pornographic material is frequently encountered in computing infrastructures and

hence the act of installing P2P applications represents a realistic scenario for the production of a misuse

threat prediction signature. The way of thinking for producing such a signature is presented in the

following paragraphs.

In the UNIX/LINUX world of operating systems, mutella [98] is a frequently used P2P application. It

is normally downloaded as a tape archive (tar file) that is normally compressed (gz extension) and is

available for download from various websites on the Internet. As a result, there are three actions that

the legitimate user needs to perform, in order to complete the misuse act.

i) Locating a source for downloading the application.

ii) Download the application

iii) Extract the application from its package format

iv) Execute the application

Step iv) marks the completion of the misuse act and thus the threat prediction factors should be derived

by the first three steps. The production of the signature requires the interpretation of these three steps

into file, network and command execution operations. Establishing the command execution signature is

a relatively simple task. The reader might recall from previous sections that there is a host command-

 129

logging facility on each computer host (more details about the facility are given on chapter 7). During

the execution of the third step, the command logging facility produces a log displayed in figure 6.25

below:

Jun 13 12:06:02 kerberosdev snoopy[23252]: [georgios, uid:502 sid:23213]: /bin/tar xvfz mutella-

0.4.3.tar.gz

Jun 13 12:06:08 kerberosdev snoopy[23255]: [(null), uid:0 sid:23162]: /bin/grep georgios

Jun 13 12:06:58 kerberosdev snoopy[23256]: [georgios, uid:502 sid:23213]: /bin/ls -F --color=auto

Jun 13 12:07:07 kerberosdev snoopy[23257]: [georgios, uid:502 sid:23213]: /bin/ls -F --color=auto

Jun 13 12:07:14 kerberosdev snoopy[23258]: [georgios, uid:502 sid:23213]: /bin/vi README

Jun 13 12:07:20 kerberosdev snoopy[23259]: [georgios, uid:502 sid:23213]: /bin/ls -F --color=auto

Jun 13 12:07:28 kerberosdev snoopy[23261]: [(null), uid:0 sid:23162]: /bin/grep georgios

Jun 13 12:08:14 kerberosdev snoopy[23262]: [georgios, uid:502 sid:23213]: ./configure

.

.

Jun 13 12:14:05 kerberosdev snoopy[24545]: [georgios, uid:502 sid:23213]: /usr/bin/make

.

.

Jun 13 12:14:09 kerberosdev snoopy[24546]: [georgios, uid:502 sid:23213]: /usr/bin/make install

.

.

Figure 6.25: Command line logging data as a result of the mutella tape archive extraction

The entries in bolded characters represent the commands that are unique to the operation and hence

they should constitute the command-line execution level component of the signature. The configuration

and compilation of the application produces a fair amount of output that has been excluded. The

exclusion was on the grounds of commands that might be user specific and hence impede the generic

character of the signature. Consequently, if someone extracts the date, user and other header data and

preserves the sequence of the entries in bold (as discussed in section 6.3.2.3), the following commands

constitute the execops data level of the signature:

/bin/tar xvfz mutella-0.4.3.tar.gz

/bin/vi README

./configure

/usr/bin/make

/usr/bin/make install

However, one might argue that the user might employ a different sequence of commands to

uncompress and extract the mutella archive. For example, instead of using the tar command with the

xvfz switches, in order to uncompress and extract the tar archive in one step, he might have followed

different steps:

/bin/gunzip mutella-0.4.3.tar.gz

/bin/tar xvf mutella-0.4.3.tar

/bin/vi README

 130

./configure

/usr/bin/make

/usr/bin/make install

Additional combinations do exist and hence the previously presented command line sequences should

both be part of the signature. Section 6.3.2.3 explained that it is possible to provide many command

sequence variations by using the OR operator and hence the execops level component of the signature

would have been encoded in the following form.

#Execops

C/bin/tarAxvfzmutella-0.4.3.tar.gz##8#C/bin/viAREADME##8#C./configureA##8#C/usr/bin/

makeA##8#C/usr/bin/makeAinstall##8# OR

C/bin/gunzipAmutella-0.4.3.tar.gz##8#C/bin/tarAxvfmutella0.4.3.tar##8#C/bin/viAREADME

##8#C./configureA##8#C/usr/bin/makeA##8#C/usr/bin/makeAinstall##8#

Having tackled the command line signature component, the installation of the mutella application will

leave certain traces at the file and network levels. Using the Internet to locate a software repository, in

order to download the application normally involves the acts of quering a search engine and then

connecting to one or more web or FTP servers to retrieve the tape archive for the application. On a

standard system, the act of downloading the application can actually take seconds or a few minutes at

most, depending on the bandwidth capacity of the established connection.

An average system creates and destroys many endpoints. Although logging facilities for network

endpoint creation and destruction are feasible they are not often employed by standard operating

system utilities. Thus, searching for a network endpoint that exists for a few seconds or minutes and

then leaves no standard traces does not represent a reliable threat prediction data source in this

particular case.

Instead, one can focus on file operations. In fact, file-level evidence that could be used to audit certain

network events is possible in this case. Many Internet Web browsers optionally employ a „history‟ file,

where they keep track of all the Uniform Resource Locators (URLs) that the user visits. The

implication of this feature in this case is that one can intercept evidence of Search Engine activity

related to searches for the „mutella‟ application, as well as visits to web pages where one would expect

to find a mutella tape archive available for download.

 131

For instance, the Netscape World Wide Web browser [99] maintains the „history.dat‟ file for every

computer system user. This file holds all the URLs that a particular user has visited for a period of

time. Microsoft‟s Internet Explorer and other World Wide Web browsers exhibit similar functionality.

Hence, if a user searches by using the keyword „mutella‟ on a number of different search engines

(Google and Yahoo for example), the file will contain entries as the ones shown below:

http://www.google.co.uk/search?q=mutella&ie=UTF-8&hl=en&meta=

http://uk.search.yahoo.com/search/ukie?p=mutella&y=i&ei=ISO-8859-1&fr=fp-tab-web-

t&cop=mss&tab=

Both URL encoded entries contain the strings „search‟ and „=mutella‟. These would point to a number

of links that would eventually link to a download link such as the one below:

http://prdownloads.sourceforge.net/mutella/mutella-0.4.3.tar.gz?download

Hence, one can now establish the file-level component of the multi-level signature, assuming that the

user browses the Internet with Netscape Navigator:

existsf:<history.dat>:<dat><s>:<s>:<*search*=mutella* OR *mutella*>:<$HOME> OR

existsf:<mutella*.tar.gz>:<tar or tar.gz>:<s>:<s>:<$HOME, /usr/src> OR

existsd:<mutella*>:<s>:<s>:<s>:<u>{:existsf:<mutella>:<binary>AND

existsf:<AUTHORS>:<asciitext>:<contains:Mutella Project>}

This particular multi-level signature will not employ network-level components. Hence, the EPT

component Weight Matrix needs to be re-defined, in order to accommodate for the absence of network-

level data and re-distribute their weight to file and command-line execution data. This will be indicated

amongst other data in the header of the signature (Figure 6.26).

#Header

192.168.2.33, Linux testbox 2.4.21-15.ELsmp #1,23,05,2003

sysmasters,intentional,unauthorsed software installation,mutella,P2P

6,6,6,6,6,10,30,0,30

#Fileops

existsf:<history.dat>:<dat><s>:<s>:<*search*=mutella* OR *mutella*>:<$HOME> OR

existsf:<mutella*.tar.gz>:<tar or tar.gz>:<s>:<s>:<$HOME, /usr/src> OR

 132

existsd:<mutella*>:<s>:<s>:<s>:<u>{:existsf:<mutella>:<binary>AND

existsf:<AUTHORS>:<asciitext>:<contains:Mutella Project>}

#Netops

#Execops

C/bin/tarAxvfzmutella-0.4.3.tar.gz##8#C/bin/viAREADME##8#C./configureA##8#C/usr/bin/

makeA##8#C/usr/bin/makeAinstall##8# OR

C/bin/gunzipAmutella-0.4.3.tar.gz##8#C/bin/tarAxvfmutella0.4.3.tar##8#C/bin/viAREADME

##8#C./configureA##8#C/usr/bin/makeA##8#C/usr/bin/makeAinstall##8#

Figure 6.26: The completed multi-level signature for predicting the P2P mutella installation

This completes a practical example that aims to illustrate how one can translate the first steps of an

insider misuse act to system-level requirements, in order to produce a threat prediction multi-level

signature.

6.5 Conclusions

This chapter presented the Insider Threat Prediction Model, the most important component of this

research project. The model relates the role and access privileges of users (referred to as user

attributes), as well as their on-line behavioral characteristics (legitimate user sophistication and file,

network and command line execution data) to the potential (not the true probability) of occurrence of

certain events. Although experimental results were discussed, this chapter focused on the theoretical

principles upon which the design of the model is based. The next chapter will address the development

of a prototype system, in order to provide additional details about the implementation and further

refinement of the model‟s operation.

 133

CHAPTER 7

THE ITPM SYSTEM ARCHITECTURE

The thesis has presented so far all the important components of the Insider Threat Prediction Model.

However, the prototype implementation of this model on a real world Operating System will require a

supporting architecture that will address a certain number of issues such as:

 A) The efficient storage and organization of the model‟s data (signatures, user session data,

operational parameters).

 B) The addressing of the performance problems the model might encounter in large

computational environments.

 C) Cross-platform compatibility issues, as the architecture will inevitably need to be

implemented in more than one Operating System, beyond the prototype level.

 D) Speed of development, as the time scales for this research project were limited to less than

12 months.

 E) The data security of the data and the associated operations that modify them is enhanced as

much as possible in the prototype system.

This chapter will start by explaining the choice of the development environment tools. Throughout the

body of the thesis, there are references to LINUX/UNIX system and the PERL programming language.

These choices were never justified properly and thus section 7.1 will explain the reasons for making

these choices. Section 7.2 will address the issue of data organization in the ITPM model. A discussion

of a suitable client/server architecture to implement the model is the subject of section 7.3. Finally, the

chapter concludes with the task of addressing performance and scalability issues related to the

implementation model on a real-world operating system.

7.1 The ITPM prototype development environment

In the process of implementing an ITPM prototype engine on a real-world operating system, one has to

choose a particular operating system and programming language to implement the code of the system.

These choices are of fundamental importance, since they define what can be done and also how quickly

certain goals can be performed.

 134

Operating

System

Cost Source Code

availability

Hardware

compatibility

Supercomputer

infrastructures

LINUX Free Excellent Very Good Supported

FreeBSD Free Excellent Not so good Supported

Windows

2000/XP

High Non existent Excellent Non existing

Table 7.1: Operating System (O/S) selection factors

Table 7.1 displays a selection of widely employed O/S choices in the Intel/AMD 32-bit microprocessor

arena. Starting with the Microsoft Windows family of products, they exhibit three fundamental

problems. The first concerns the unavailability of the O/S source code with secondary problems

concerning the price of the base O/S and the development tools and lastly the lack of the Operating

System‟s suitability for a supercomputing environment during the development phase of the research

project [100]. The importance of supercomputing facility support is discussed in section 7.3.

Amongst LINUX [101] and Free/BSD [102], the choice was based on the fact that the latter O/S does

not provide as good support for commodity PC hardware as LINUX does. Although both LINUX and

Free/BSD target the personal computers and offer (at no additional cost) a wide range of programming

language/compilers by default, LINUX has a larger community of developers when it comes to device

drivers and hence it has become substantially more user friendly than Free/BSD. In fact, LINUX has

today grown into a commercially acceptable O/S addressing both the server [103] and desktop

computing market [104]. For all these reasons, LINUX is the best O/S choice for the ITPM prototype

system.

The Practical Export and Reporting Language PERL, the Tool Command Language TCL and the

Python Programming Language were considered as the candidate programming languages. All of these

choices constitute scripted programming languages [105] often employed in the prototyping of systems

and all of them are cross-platform oriented, in order to reduce the time to develop basic prototype tools.

 135

Figure 7.1: Regular expression performance amongst various programming languages

The graph of figure 7.1 indicates the results of a test that measures the computational efficiency of the

pattern matching (regular expression) engines of various programming languages [106]. The test

included string extraction operations according to certain regular expression criteria from an input file.

The x-axis represents various programming languages, whereas the y-axis represents a normalized

computational cost in terms of CPU execution time and memory consumption footprint. Higher costs

indicate poorly performing languages.

Based on these assumptions, the graph of Figure 7.1 indicates that the PERL programming language

offers the best regular expression features in terms of computational performance amongst the three

originally selected languages (PERL, Python, TCL). For these reasons, PERL was the best choice for

this research project.

Figure 7.1 also indicates the performance supremacy of compiled programming languages such as C

and C++. It is commonly accepted that programming languages that produce native machine code have

always better performance than interpreted languages. However, the prolonged development time they

introduce make software engineers choose to prototype their systems in scripted languages and then

build the performance intensive parts in compiled languages [105].

 136

7.2 Organizing the ITPM data

hosts

PK hostid

hostip

targetos

signaturedir

noofusers

usrmd5sum

signatures

PK signid

targetos

hostip

Crole

creationday

creationmonth

creationyear

reason

keyword1

keyword2

keyword3

signfile

Events

PK eventid

userid

signid

Fbreadth

Fappscore

SCPU

SRAM

SSIMAPPS

Fresutil

Fdepth

Fsophistication

Ffileops

Fnetops

Fexecops

Fbehavior

EPT

Insider Threat Prediction Model

Database Schema

Users

PK userid

unixuid

unixgid

adsid

firstname

middlename

lastname

homeonhost

Crole

Csysadm

Ccriticalfiles

Cphysicalaccess

Fattributes

allfortargetos

usercategoryflag

Figure 7.2: The ITPM database schema

Chapter 6 presented a plethora of data sources including misuse prediction signatures formats as well

as user command line data collection structures. All of these data require efficient organization. In

particular, it is important that the process of comparing user and system activity against a number of

particular misuse signatures should be easy and transparent. Thus, a Relational Database Management

 137

System (RDBMS) should be employed, in order to aid the process of efficient data management. The

RDBMS schema of such a database is shown in Figure 7.2.

The schema consists of four tables. The „Hosts‟ table keeps track of all the individual computer

systems managed by the ITPM system by recording the computer system‟s IP address (hostip),

operating system (targetos) and the system directory where the signatures (for this particular host) are

stored (signaturedir). The „noofusers‟ column indicates how many users exist in the host, whereas

„usrmd5sum‟ is used to indicate changes in the user entry database of each computer system.

The purpose of the „Signatures‟ table is to allow the ITPM system operator to store and query the

produced misuse signatures in an efficient manner. It should be emphasized that the „Signatures‟ table

does not store the contents of the signature, but only information related to its header (Figure 6.24). As

a result, signatures can be queried by one or more qualifiers such as the operating system of the host

(targetos), the IP of the host where the misuse signature is applicable (hostip), the user category that

they refer to („Crole‟in relation to Figure 5.2), as well as the day, month and year of their creation. The

„reason‟ column indicates whether the signature refers to accidental or intentional misuse. Lastly, the

three keywords identify further the scope of the contents of the signature and „signfile‟ is the full path

to the file that contains the signature in the host signature repository.

The „Users‟ table provides a repository of certain legitimate user attributes associated to the ITPM

model. Most of the column names are derived by the names of the various ITPM equation parameters,

as described in the sixth chapter of the thesis. The rest of the column names are related to operating

system user identification data. UNIX-like operating systems always contain a numeric user

identification number for the user and the file group that the user belongs to (unixuid, unixgid). In order

to preserve cross platform compliance, the database also accommodates Microsoft‟s Active Directory

Security Identifier (SID) as an alternative O/S user identification method. An Active Directory SID is a

“unique value of variable length used to identify a user account, group account, or logon session”,

according to Microsoft‟s TechNet documentation [107].

 138

The last two column identifiers of the „Users‟ table define which signatures are applicable to a

particular user. If the „allfortargetos‟ flag is set (binary data type), then the user actions will be checked

against all the signatures that are defined on the host. Alternatively, if the „allfortargetos‟ flag is not set,

then the user actions are going to be checked against the host signatures that concern the

„usercategoryflag‟ he belongs to. This optional feature can help the ITPM operator reduce the

computational resources required for the operation of the model, by refining the number of signatures

that need to be checked.

Finally, the „Events‟ table contains a collection of user EPT score values that originate from the

checking of user accounts against the defined insider misuse signatures. Figure 6.22 explained the basic

operation of the model by indicating that every active user is checked against a number of signatures

and hence this table is the most frequently modified one during the operation of the system. One can

observe that where the „Users‟ table contains mostly the parameters of the users that are modified less

often (Fattributes), the „Events‟ table holds the user attributes that are more dynamic in nature (Fbehavior).

The derived database schema is not normalized and its referential integrity is solely dependent on the

ITPM system application code. For instance, if a particular host is removed from the „hosts‟ table, the

ITPM system is responsible for removing the associated entries from the „Signatures‟, „Users‟ and

„Entries‟ table. The same effect could be achieved by employing foreign keys, a feature often employed

in Relational Databases. However, the choice of not employing foreign keys and other RDBMS driven

referential integrity mechanisms was an intentional one, in order to make the task of implementing the

scheme to various relational databases easy. The implementation of these schemes amongst the various

available databases may differ substantially and it would reduce the portability of the ITPM system.

The MySQL RDBMS system [84] was chosen to implement the database schema. Section 6 of

Appendix E contains sample code for the creation of the table scheme. MySQL is an Open Source,

cross platform RDBMS that is widely known for its excellent performance. PostgreSQL [108] is also a

popular Open Source RDBMS. Although PostgreSQL supports a larger array of relational database

features than MySQL, for simple SQL queries the latter RDBMS is faster and more computationally

 139

efficient than PostgreSQL [109]. In addition, the compatibility between MySQL and PERL has been

proven throughout the development world.

Commercial products such as Oracle [110], Sybase [111] and IBM DB2 [112] were excluded due to

licensing costs. Although these products are feature rich and scalable, the extra features they offer on

performance and scalability are not really needed in the early ITPM prototype platform.

7.3 The ITPM Client-Server architecture

Having addressed the issues of selecting a suitable O/S and a programming language to develop the

code, as well as a way of organizing the ITPM data, the next logical step in the process of building a

prototype system is to consider how the functional blocks of the system fit together, in order to address

the basic requirements of scalability, operational integrity and cross-platform compatibility. Figure 7.3

provides the functional diagram of the ITPM system.

Figure 7.3: The ITPM Client/Server architecture

ITPM server running

the globalmon,

ITPT manager

 ITPM database

SAMBA server

modules

ITPM client

with

CIFS client

host command logger

 hostregister

scriptsITPM

Database

(hosts, users,

signature headers

and scored event logs)
CIFS over SSH

CIFS over SSH

SAMBA

(CIFS) server module

file area

(user log data)

ITPM client

with

CIFS client

host command logger

 hostregister

scripts

ITPM operator console

 140

The basic reasoning for designing this architecture is twofold. One of its aspects emerges from the need

to place the most computing intensive tasks on a dedicated machine. Chapter 6 elaborated on the

performance characteristics of the various ITPM algorithms showing that some of them can create a

serious contention issue with regards to computational resources. Thus, with the cost of 64-bit

computing hardware falling[113], instead of placing the burden on the resources being monitored, it is

better to purchase a dedicated server system which will take care of the most computationally intensive

aspects of the system.

Another aspect of the client/server scheme concerns the operational integrity of the model. The task of

leaving important operational data (such as the ITPM database, the stored signatures) spread around

various systems creates additional data security complications, depending on who controls the various

machines and his intentions. A central repository of these data is a better idea in terms of data security

and is also a factor that eases the maintenance of the system. For instance, in order to ensure data

availability, it would be much easier to backup databases and user attributes from a central host rather

than a large number of them.

The data security requirement aspects are also reflected on the communication channels between the

ITPM server and its clients. All data exchanges for program execution and file-system access are

performed via Secure Shell (SSH) protocol sessions [78]. A more application-orientated description of

the SSH protocol is given in [114]. The SSH protocol provides a flexible and secure mechanism for

connecting data streams together amongst machines connected via the TCP/IP protocol suite (the

requirements listed in section 6.3.2.2 explained why TCP/IP is chosen as the preferred protocol for the

ITPM architecture). The adequacy of the protocol‟s security functionality is justified by certain features

the protocol has to offer such as:

 SSH encrypts the data stream amongst two machines and thus prevents unauthorized parties

from eavesdropping at either end or anywhere in the middle of the communication path. A

variety of encryption algorithms can be employed such as triple DES [115], certain versions of

the Advanced Encryption Standard [116], the Blowfish cipher [117] and others.

 SSH offers authentication by means of the widely employed Diffie-Hellman public-key

distribution method [118]. As a result, a communicating host can verify the true identity of its

 141

peers. This functionality is highly desirable in the ITPM architecture as it prevents a variety of

identity spoofing techniques, as well as the „man-in-the-middle‟ attack [119]. Although the

original version of the Diffie-Hellman public key exchange [118] was vulnerable to „man-in-

the-middle‟ attacks, the SSH protocol uses the revised authenticated version [119].

 SSH provides data stream integrity. Every single message of the data stream that gets received

by the other side is checked for completeness and malicious alterations. The message

integrity feature prevents replay attacks [114], where a session is replayed to cause the same

action to be repeated for the purposes of bypassing the security defenses of a system.

The flexibility of the SSH protocol is specified by its ability to encapsulate other application-level

protocols within its data stream. This feature is called „tunneling‟ and allows insecure protocols to be

employed securely in an IT infrastructure. This is the case with the Server Message Block protocol

[120], whose core was developed to share printers, files and serial ports amongst computers. In 1996,

Microsoft has extended SMB and renamed it to „Common Internet File System‟ (CIFS). However,

despite the CIFS additional features, the protocol suffers from many security deficiencies [121].

Although some of the vulnerabilities mentioned in [121] have been addressed, the protocol is still

considered insecure.

Despite the security issues, the CIFS protocol eventually became the ubiquitous interface to provide

common file system and printing services amongst UNIX and Microsoft Windows-based computers. It

is, hence, an excellent choice with regards to cross-platform compatibility. Therefore, if one combines

the CIFS and SSH by means of encapsulating CIFS traffic via an SSH tunnel [114], he will achieve a

cross-platform solution that also addresses the security concerns of the core CIFS protocol.

The ITPM server host (Figure 7.3) runs a „Samba‟ CIFS server [122] on the LINUX O/S. The purpose

of this server is to host directory areas that can be mounted by the ITPM clients. The clients can then

deposit the various user data (command execution logs, misuse signatures) on these directories. Server

processes can also access these directory areas to analyze the collected data and populate the ITPM

Relational Database (MySQL) (as described in section 7.2) that runs also on the server host. Lastly,

 142

the ITPT manager is a Graphical User Interface application that coordinates all the system utilities and

allows the ITPM operator to interface with the system.

The ITPM client runs a series of monitoring scripts under the control of the server-based ITPM

manager application. The „globalmon‟ script is responsible for monitoring all the active users of the

system. An „active‟ user is one that owns one or more processes on a client system. Hence, the script

maintains an up-to-date list of all the active users on a system and then executes a series of data logging

functions for every user of that list. The „globalmon‟ script is also responsible for secondary house

keeping functions, such as the task of making sure that the client host is properly registered with the

ITPM server.

The „host command logger‟ is a very important system-level application that provides a log of all the

commands executed by every user of a client host. Section 6.4 of the previous chapter assumed the

existence of this facility and figure 6.25 provided a sample log generated by this facility. On a

UNIX/LINUX operating system, this functionality can be achieved by intercepting all the execve

system calls [123].

System calls are consistently defined functions that software applications can invoke whenever they

wish to perform an Operating System function. These functions are often combined together into an

Applications Programming Interface (API) library. File access, memory allocation and release, as well

as the starting and stopping of other applications are some characteristic operations that are performed

by means of invoking certain API system calls from a software application. In the host command

logger facility‟s case, the goal is to keep a record of all the commands executed by all users. An execve

system call wrapper is a small program that intercepts every single execve system call executed by the

O/S and places the output into a human readable file. The project employed „snoopy‟ [124], an open

source execve wrapping utility. The source code of this utility is given in Appendix E (section E5).

The „hostregister‟ client script is responsible for registering a client with the ITPM server (Appendix E

section 7). The registration process involves the enumeration of the operating system and user area

executable commands as described in section 6.3.2.3, the generation of the necessary authentication

 143

credentials for the purposes of communicating via the SSH protocol and procedures to initialize the

ITPM database tables with user and host related data. Finally, the „createsignature‟ script (Appendix E

section 4) is also a client-based utility that is responsible for constructing the multi-level insider misuse

prediction signature (section 6.4). It is invoked by the ITPM manager application, however it operates

on the ITPM client OS and creates host-specific signatures.

The source code of all the aforementioned scripts of both the client and server hosts is provided in

Appendix D of the thesis.

7.4 ITPM system scalability considerations

The previous sections of the Chapter presented the design choices for constructing an ITPM prototype

system. Figure 7.3 presented a client/server scheme where all the threat prediction computations are

performed on a single ITPM server. Depending on the computational power of the ITPM server and as

the number of hosts/users increases, there are two types of limits that are likely to create a bottleneck.

Both of them can seriously impede the operation of the proposed architecture.

The first type of bottleneck concerns the number of monitoring processes that are started in the ITPM

server host. Each client host executes an instance of the „globalmon‟ script. Each instance of the script

might invoke in series further applications, in order to monitor the list of active users. In addition, a

single instance of the „globalmon‟ script and all of its child processes can demand several tenths of

megabytes of RAM. As the amount of CPU time and RAM memory on the server system is finite,

there is clearly a limit where the system will refuse to execute further instances of the script or allocate

more memory for threat prediction computations. Long before that limit is reached, a deterioration in

the responsiveness of the system is expected that might render the server unusable.

Bottlenecks are also expected to occur in the operation of the ITPM database. The execution of the

various scripts results in a number of database queries (reads and writes). The number of queries

increases in proportion to the number of registered hosts. Heavily utilized RDBMS engines draw quite

a lot of CPU and RAM computing resources, representing a second important point of resource

contention in the ITPM server host.

 144

In order to prove these predictions, a load testing plan was devised, in order to simulate the load of

several instances of the globalmon script on the ITPM server host. There were no provisions to test the

system on a large infrastructure, so the computational impact had to be estimated by means of load

testing simulation. Each instance of the globalmon script operated on 100 virtual users (all running on

the same client host) and with just 20 sample signatures in the ITPM database. The results of this

testing scheme on a dual Pentium III 1GHz system with 2 Gb of RAM (ITPM server) are shown in the

graphs of figures 7.4 to 7.6.

The graphs indicate clearly that this particular ITPM server was no capable of withstanding more than

40 instances of the script under simulated conditions. This means that the single server could roughly

monitor 30-40 multi user hosts. The invocation of more instances of the script caused serious swapping

activity on the system and eventually the machine ran out of memory with noticeable performance

degradation, well before the launch of the 40
th

 globalmon script instance. This performance would be

acceptable in small business and research environments, but is clearly unsuitable for medium to large

enterprise computing environments.

Figure 7.4: Single ITPM server CPU load

Relative CPU load

0

5

10

15

20

25

5 10 20 40

Number of globalmon instances

R
el

at
iv

e
C

P
U

 l
o

ad

% CPU

 145

Figure 7.5: Single ITPM server RAM utilisation

Figure 7.6: Single ITPM server MySQL load

If one wishes to address the previous resource contention issues, he will have to expand the

computational resources by adding more RAM and a greater number of CPUs to the ITPM system.

This goal can be achieved by employing Multi-Processor systems [125]. A Multi-Processor computer

system consists of a hardware architecture that interconnects two or more CPU, as well as a number of

RAM memory chips, in order to process different instructions simultaneously and increase the overall

computational throughput. The way of interconnecting the CPU and memory modules distinguishes

Multi-Processor systems into „tightly coupled‟ and „loosely coupled‟ systems. This distinction is very

important because it affects its cost, performance and the system maintenance complexity.

RAM utilisation

0

500

1000

1500

2000

2500

5 10 20 40

Number of globalmon instances

M
eg

ab
yt

es
 o

f
R

A
M

RAM

MySQL queries per second (qps)

0

5

10

15

20

25

30

5 10 20 40

Number of globalmon

instances

q
u

er
ie

s
p

er
 s

ec
o

n
d

MySQL qps

 146

A „tightly coupled‟ Multi-Processor design is often constructed as a Symmetric Multi Processing

(SMP) system. The term „symmetric‟ implies that the interconnected CPUs are identical in terms of

hardware architecture. It also means that the O/S should not have any bias towards allocating specific

programs to particular CPUs. All CPU modules are considered equally capable of executing any type

of application. A basic diagram of an SMP dual CPU system is illustrated in figure 7.7.

Figure 7.7: SMP computer system Functional blocks

The „system backplane‟ is a bespoke interconnection bus that is highly optimized for inter-CPU

communication and memory access. The interconnected CPUs can access a global „shared memory‟

area and they also maintain their own cache memory. The operation of the „system backplane‟ bus is

regulated by the „backplane controller‟ module.

On the other hand, „loosely coupled‟ MP systems can be constructed by replacing the highly optimized

„system backplane‟ with a more conventional Data Network technology. In this case, the CPU and

memory modules can be ordinary uni-processor computer systems, and the interconnection medium is

normally provided by a Data Network technology such as Gigabit Ethernet, the more expensive

Myrinet and other experimental interconnects such as Infiniband [126]. A loosely coupled MP system

Shared memory

CPU1 Cache memory for CPU1

Local CPU bus

System Backplane

Backplane

controller

CPU2 Cache memory for CPU2

Local CPU bus

 147

does not have explicit hardware support for shared memory. The memory resources are distributed and

specialized software is required to emulate a shared memory resource area.

Each of the aforementioned MP architectures has its own strengths and weaknesses, depending on the

application that one chooses to run. SMP systems exhibit excellent reliability and the minimum amount

of system administration maintenance. They also provide excellent performance for applications that

require a lot of interaction between them. This is because of the highly optimized system backplane

which reduces the latency amongst communicating CPUs and their explicit shared memory hardware

support.

However, these features make SMP systems very expensive. Typical prices require several hundreds of

thousands of pounds for the purchase of CPU systems that have more than 4 CPUs and this can be

prohibitive for small budgets. Scalability (the maximum amount of processors that can be fitted on the

backplane) is also limited beyond 256 processors at the time of writing.

In contrast, loosely coupled systems are most efficient when the applications require minimum

interaction amongst them. Conventional Data Network technologies such as Gigabit Ethernet are still

not able to offer the low inter-CPU communication latencies of SMP system backplanes. A „Myrinet‟

interconnection improves further the communication latencies of loosely coupled systems in relation to

Gigabit Ethernet [126] at a higher cost, but even that technology is still not efficient as an optimized

SMP backplane.

Because loosely coupled systems are often build by commodity hardware components based on

hardware manufacturers such as Intel and AMD, they are orders of magnitude cheaper than SMP

systems with the same amount of CPU and memory modules. Moreover, because commodity hardware

is standardized, it is possible to construct a loosely coupled system from heterogeneous computer

systems. This property can maximize the exploitation of computing resources inside an organization

and had created the field of commodity HPC clusters. Commodity clusters are able to scale into

thousands of processors. They require a larger amount of system administration maintenance but they

constitute the cheapest way to build small or large scale HPC infrastructures.

 148

Figure 7.8: Scalable ITPM client/server architecture

Figure 7.8 illustrates a loosely coupled system based on a commodity cluster distributed processing

paradigm. This design refines the original client/server schema and allows the ITPM architecture to

scale for monitoring large computing infrastructures. The computing nodes (bottom left) are used as

additional CPU and RAM memory resources to execute instances of the globalmon script in parallel.

The computing nodes and the ITPM servers are connected by means of a dedicated restricted Gigabit

Ethernet network segment (green connector lines).

The ITPM database has been placed on a separate server, due to its intensive computational

requirements. Hence, one ITPM server is dedicated to the ITPT manager application and the allocation

of instances of globalmon scripts to the computing nodes, whereas the ITPM database server can offer

a dedicated SMP architecture to scale the capacity of the RDBMS application. Database manufacturers

such as Oracle [110] and (recently) MySQL [84] can offer RDBMS products that are optimized for

distributed (loosely coupled) MP systems. However, at the time of writing, these products are relatively

untested and hence SMP systems offer a conventional and well-tested option for RDBMS scalability.

 149

After explaining the logic behind partitioning the ITPM server and the making of a commodity cluster

that consists of loosely coupled CPU and RAM modules, we also need to select the software that

migrates the globalmon scripts from the ITPM server to the computing nodes. Condor [127] is a freely

available complex front-end management system for distributing computing jobs to computational

nodes. It runs on many UNIX platforms, including the LINUX O/S.

The architecture of Condor is based on a client/server model. The master server (or „Central manager‟)

is located on the ITPM server. The master server module collects the job requests and then allocates the

jobs to computing nodes according to certain computational resource availability criteria. This differs

from the pure SMP model, where there is normally no preference on which CPU will be allocated a

particular task. Condor could make smart decisions by allocating the next task to the least CPU loaded

node or for instance to a node that has a certain amount of free RAM or disk space available. This

functionality allows one to have complete control over the way distributed computing resources are

utilized.

In order to put these theories into the test, the load testing simulation was repeated with the Condor

installed on the ITPM server and two identical nodes (Pentium III 1GhZ, 2Gb of RAM) interconnected

as shown in Figure 7.8. We then used the condor batch system to migrate instances of globalmon

scripts to the three SMP clients. The end result was that we were able to scale the number of

globalmon script instances to approximately 120. In addition, Figure 7.9 shows the separate MySQL

performance during the execution of the globalmon instances on the commodity cluster. The RDBMS

server was now able to execute approximately five times more queries than in the single server

scenario. This indicates that the bottleneck in the single server scenario came really from the execution

of the globalmon scripts on a single server and that this architecture will scale the ITPM client server

model to larger infrastructures.

 150

Figure 7.9: MySQL server performance – commodity cluster approach

7.5 Conclusions

This chapter presented the details of the ITPM prototype system architecture. The development of an

early prototype system was necessary, in order to refine the proposed model and lay the foundations for

further research and development efforts in the field of Insider Threat Misuse Prediction. The design

addressed the originally envisaged goals for a scalable, secure and Operating System neutral prototype

system, in order to facilitate experiments on Insider Threat Prediction.

MySQL (qps) - Commodity cluster

0

20

40

60

80

100

120

140

160

5 10 20 40 60 80 100 120

Number of globalmon instances

Q
u

e
ri

e
s
 p

e
r

s
e
c
o

n
d

MySQL (qps)

 151

CHAPTER 8

CONCLUSIONS

The previous chapters of the thesis have presented the problem of Insider Misuse and discussed how it

is possible to devise a systems architecture that predicts the occurrence of insider threats in a

computing infrastructure. This chapter offers a critique on the perceived achievements and limitations

of the research project, with regards to its initial objectives stated in section 1.1 of the thesis. The first

section evaluates the accuracy of the insider misuse research field investigation that the research

project has performed. Section 8.2 criticizes the core deliverables of the thesis. The strengths and

weaknesses of the ITPM system are discussed. The chapter concludes with a suggestion of additional

methods to address the perceived limitations of this architecture and guide future research efforts in the

field.

8.1 On the accuracy of the Insider Misuse survey and the preliminary analysis of

insider threats

The first objective of the research project was to provide a total overview of the Insider Misuse

problem. Chapters 3 and 4 attempted to address this issue. The earlier presented an overview of the

problem, mainly by analyzing data from the CSI/FBI survey and the consideration of real-world cases.

The latter chapter devised a bespoke survey for the Insider Misuse problem as part of this research

project, based on a small sample of fifty computer professionals.

The 2001 CSI/FBI Computer Crime and Security survey [55], has the following comment by Schultz:

“I would like to add that any statistics concerning security related incidents should not be taken at face

value…”. Moreover, the DTI/PWC 2004 survey mentions that: “… They [surveys] also tend to be

biased towards larger and more security-aware organizations…”. Both of these statements indicate

that the goal of an information security survey is to reveal broad incident trends, not make warranties

about absolute numbers validated by accurate statistics.

However, [52] suggested an informal way to verify the validity of a survey, which is not other than a

comparison of the survey with other similarly minded surveys. Since this research project contributed

the small scale insider misuse survey, the validity of this contribution could be cross-checked by

 152

comparing the derived conclusions with the 2003 CSI/FBI Computer Crime and Security survey [53],

as well as the most recent DTI/PWC 2004 survey [52]. Section 4.6 discussed the similarities of the

project‟s Insider Misuse survey to the 2003 CSI/FBI Computer Crime and Security survey. The

following paragraphs will examine notable similarities between the data derived from the Insider

Misuse survey and the DTI/PWC survey. Some aspects of the conclusions derived in chapter 3 are also

in line with the results of the DTI/PWC survey and they are also considered.

From a statistics point of view, nearly a quarter of the DTI/PWC participants have stated that their

worst security incidents have originated by internal user actions. The difference between this figure and

the one quoted by the Insider Misuse survey (70%) is a large one, indicating the bias of the Insider

Misuse survey towards Insider Misuse incidents. On the other hand, the DTI/PWC survey mentions

that Insider Misuse has doubled since the year 2002, mainly driven by the increased adoption of World

Wide Web and Internet related technologies. Consequently, one can repeat the conclusion made in

section 4.6: All three surveys indicate that the Insider Misuse problem is a serious threat for the health

of IT infrastructures.

In addition, the Insider Misuse survey highlighted roughly the same common types of legitimate user

misuse with the DTI/PWC survey. Chapter 4 mentioned that the three most serious (in terms of

frequency and disciplinary actions taken as a result of the incident) types of misuse was the

downloading of pornographic material, the theft or malicious alteration of data and the abuse of email

resources (figure 4.12). In direct comparison, the DTI/PWC highlights the incidents of web browsing

misuse, misuse of email and unauthorized access to systems or data as the major system misuse

categories.

It is really difficult to compare classes of incidents amongst different surveys, due to the different scope

of the incident categories. The „Web browsing misuse‟ category of the DTI/PWC survey can include

the downloading of pornographic material and other unauthorized use of the World Wide Web facility ,

mainly for non work related purposes, a scope of misuse that has highlighted by the Insider Misuse

survey in figure 4.13. The same can be said about the DTI/PWC „email abuse category‟. Although the

Insider Misuse survey considered activities such as spamming or the use of email for abuse or

 153

defamatory purposes, the scope of the DTI/PWC email abuse definition was broader including email

utilization for personal purposes, resulting in lost productivity. Nevertheless, the two surveys

highlighted three of the most common problem areas in slightly different order.

Another notable similarity between the Insider Misuse and the DTI/PWC surveys is the highlight of

staff security checks during the recruiting process. Figure 4.17 of the Insider Misuse survey indicated

that all of the surveyed professionals indicated some preference towards the existence of certain pre-

employment security checks for prospective employees. The DTI/PWC indicated that the majority

(66%) of the respondents usually perform some sort of security check during the recruiting stage. The

DTI/PWC survey comments that the absence of these security checks from company procedures is

clearly a serious omission.

With regards to the preliminary analysis of the Insider Misuse threat nature (chapter 3), the DTI/PWC

survey has revealed another noteworthy conclusion that concerns the relation between internal and

external security incidents. Section 3.4 of the thesis concluded that mutual exclusion between internal

and external incidents is not an adequate way of analyzing internal threats in a computing environment.

The DTI/PWC „information security breaches survey 2004‟ authors emphasize that, for the first time,

the participants could identify incidents that were caused by a combination of internal and external

factors. This verifies the fresh line of thinking which links the two different types of incidents, in order

to provide a more holistic approach in the process of understanding the real impact of the insider

threats.

Consequently, the thesis has provided a comprehensive overview of the insider misuse problem and

satisfied the first two of the four objectives of section 1.1.

8.2 On the Insider Threat Prediction Model architecture

The conclusions derived by the analysis of the various surveys and the discussion of well known

insider misuse cases have been used to form a taxonomy of insider threat prediction events (chapter 5).

The establishment of the taxonomy was necessary in order to profile the consequences of insider

misuse actions at system level. Whilst chapter 5 discussed various types of taxonomies, it introduced

 154

the notion of structuring a taxonomy around system level actions. This idea represents a fresh approach

in and created a number of publications ([65],[70],[131]) and formed the basis for a revised Insider

Threat prediction taxonomy and the associated ITPM system architecture.

It is really difficult to criticize the effectiveness of the overall architecture for two main reasons. The

first one revolves around the fact that, at the time of writing, there were no similarly minded published

architectural descriptions and associated system implementation attempts. The insider threat

frameworks suggested by Wood [82] and Schultz [83] are preliminary plans and they do not constitute

complete architectural attempts that mitigate the problem of insider threat. Whilst this fact indicates the

unique contribution of the thesis to the research domain, it also represents an obstacle in the evaluation

of the work. One could objectively locate the strengths and weaknesses of the ITPM architecture more

easily if there were similar frameworks to benchmark against.

The second –and most important reason- is the lack of insider misuse case data. This research project

was based on the systematic examination of legitimate user actions at system level. Although most of

these actions could be reproduced by reading about an insider misuse incident and then reproducing the

misuse procedure in a simulated environment, this approach might not be the best one for validating the

effectiveness of the ITPM architecture. Information security surveys and mass media might report

accurately the outline of the case, however they do not provide a complete picture about the conditions

under which the incident occurs nor they always reveal fully the timing, commands and the order in

which they occur. The lack of much needed insider misuse case repositories is mentioned in [128].

As a result, the critique presented in the following paragraphs is derived in terms of the design

philosophy of the proposed architecture and not by real world benchmarks or extensive testing of the

proposed architecture.

From an architectural point of view, the ITPM system has combined misuse detection (mostly for the

detection of command execution, network and file operations) as well as elements of anomaly detection

associated mainly with the process of evaluating the level of legitimate user sophistication. The

combination of these two techniques is often encountered in IDS designs, as discussed in section 2.4 of

 155

the thesis. The choice of applying misuse detection to the monitoring of file, network and command

execution events was made for the purposes of computing efficiency and also due to the fact that

misuse detection is applicable to events that are predictable. Misuse threats are analyzed and the threat

signs are known.

Consequently, in the domain of insider misuse threat prediction, misuse detection has the advantage of

computational efficiency. The only perceivable disadvantage relates to the fact that the threat

prediction success is dependent on the crafting of the misuse signature. If the understanding of the

misuse incident is flawed or incomplete, the accuracy of the system will be also flawed. Clearly, the

ITPM architecture emphasizes the role of the security specialist, in direct contrast to turnkey solutions

that offer heuristics driven by machine learning methodologies.

Despite the aforementioned disadvantage of the ITPM misuse detection components, it should be noted

that the philosophy of employing human-driven misuse detection to mitigate security incidents has also

been in the core of the computer anti-virus industry with great success. Today, anti-virus products

might employ anomaly detection or heuristic-based approaches in the process of detecting and

intercepting the actions of malicious computer code. „Kaspersky Labs‟ [129], Symantec [130] represent

characteristic anti-virus vendor examples that try to enhance the performance of their products by

employing heuristics. Nevertheless, the core of their engines is based on misuse detection methods

whose signatures are written by computer virus researchers.

A secondary side effect of the misuse prediction parts of the model is related to the complexity of

devising the misuse prediction signatures. The plethora of potential scenarios and their subsequent

interpretation into suitable file, network and command execution statements can be a daunting task,

even for experienced security specialists and busy system administrators. Although the prototype

system provided signature creation tools that create the complete multi-level misuse signature (section

6.4), the information is still entered in a mechanistic way.

It would be easier if the information was entered into the system in a more user friendly format, by

means of worded statements that conform to an insider misuse prediction specification language. A

 156

language parser could then convert the worded statements into suitable file, network and command

execution statements that form the misuse signature. Although the proposed ITPM architecture

provides the backbone for the formation of such a language, it focused more on the content of the

signatures at system level, without providing a semantic framework for abstracting the misuse

statements. Consequently, the derivation of such a language would be a worthy addition to the

architecture that would greatly enhance the operational effectiveness of the ITPM system and section

8.3 will propose ways to embed this functionality to the project.

Whilst misuse detection achieves good results when applied to predictable data sets, it is difficult to

apply patterns when estimating less certain data. Evaluating user sophistication by means of examining

a plethora of computer applications amongst different computing environments requires a different

detection approach. As a result, the part of the ITPM model that evaluates user sophistication is based

on anomaly detection. The method and its results were submitted by Magklaras and Furnell [131]. It

performed really well on the experiment of section 6.3.2.1 and no instances of user misclassification

were observed. However, the fact that the model has to be re-trained even after small changes

(removals or additions of software applications) to the computing environment reduces the flexibility

of this method. This constitutes a serious disadvantage in rapidly changing IT environments.

Nevertheless, the user sophistication component of the ITPM model represents a novel experimental

approach that could not only provide a metric for an Insider Threat Prediction process, but which could

also be useful for people concerned with the automatic customization of Human Computer Interaction

(HCI) interfaces, or people that would like to estimate the productivity potential of their computing

users.

Thus, a detailed Insider Threat Prediction model was proposed with its associated architecture for a

proof-of-concept system implementation. This satisfies objectives 3 and 4 of section 1.1. However, it

becomes clear that the proposed system requires more rigorous validation. A greater number of

incidents must be tested in the model, under different types of computer environments. Unfortunately,

the lack of a central insider misuse case data repository and the time scales of this project did not leave

 157

room for performing a more systematic evaluation of the model. The next section will discuss future

research directions that will make the process of validating the model feasible and more effective.

8.3 The research continues

Whilst the ITPM architecture presents a first step towards the construction of tools that mitigate the

insider threat, it is by no means a complete design. There are several challenges that the research

project has not addressed due to time limitations as well as problems that were perceived after the

completion of the experiments. The addressing of these issues will perfect the ITPM architecture and

guide the production of more accurate research and development insider threat prediction tools.

8.3.1 The insider misuse case data repository

Section 8.2 mentioned the lack of insider misuse case data repositories. A central database of insider

misuse cases built around the „signatures‟ table (Figure 7.2) of the ITPM database is a very important

step that would be of great aid to insider misuse researchers worldwide. The maintenance of the

database should be done by experts that collect the data from real-world computer crime scenes.

The field of computer forensics offers methodologies that perform the necessary data collection

procedures in a standard manner. Vacca [132] defines computer forensics as “…the collection,

preservation, analysis and presentation of computer related evidence”. Thus, standard computer

forensics software could be employed to recover the necessary data and then further tools need to be

created in order to construct the necessary misuse signatures for the ITPM architecture and populate

database repositories. If a researcher wishes to address a particular problem, he could then browse the

database for incident-driven recipes of misuse signatures and then modify them appropriately, in order

to construct misuse threat signatures tailored to his environment.

The existence of such a data repository could also decrease the signature construction time and act as a

benchmark for comparing different methodologies or models and tools for mitigating insider threat. If

one has access to accurate and standard ways of reconstructing real-world cases, he could more easily

establish testing frameworks for assessing the prediction accuracy of different models.

 158

8.3.2 Towards an Insider Misuse Threat Prediction Specification Language

The critique of section 8.2 also referred to the complexity issues that surround the construction of

misuse signatures in the proposed ITPM architecture and talked about the construction of a complete

insider misuse threat prediction specification language. Such a language would be a special case of a

Domain Specific Language (DSL), a semantic mechanism tailored specifically for describing the

details of a particular task [133]. The main goal is the usage of appropriate semantics to reduce the

effort required to reference and manipulate elements of that particular domain. Thus, a methodology

for deriving a Domain Specific Language includes three important steps:

- The abstraction of the domain, which involves the removal of all the unnecessary details of

the environment.

- The systematic categorisation of the necessary (abstracted) details into language semantics.

- The process of engineering the developed semantics into software.

The proposed Insider Misuse Threat Prediction event taxonomy (chapter 5) as well as the derived

Insider Threat Prediction model represent the abstraction of the problem domain. The proposed misuse

signature encoding semantics could form parts of such a language but they lack the completed semantic

framework. The next paragraphs will represent some notable research and development efforts that

could be re-used to form the Insider Misuse Specification language.

Section 2.5 of the thesis has mentioned the troubled Common Intrusion Detection Framework (CIDF)

[29], whose scope of work has been taken over by the IETF Intrusion Detection Message Exchange

Format working group [30]. The framework‟s Common Intrusion Specification Language (CISL) [134]

consists of a semantic framework to unambiguously describe intrusive activities together with proposed

data structures that store the event information and can form standardised messages exchanged by

various IDS components.

The CISL framework could be re-used for producing a suitable Insider Misuse Threat Specification

Language. However, the framework would require substantial re-engineering. The following

 159

paragraphs discuss the CISL framework the latest research efforts associated with it, present the major

flaws it has and suggest a research and development methodology to eliminate these problems.

In CISL, the semantic representation of intrusive activities is achieved by the formation of an S-

Expression. An S-Expression is a recursive grouping of tags and data, delimited by parentheses. The

tags provide semantic clues to the interpretation of the S-Expression and the data might represent

system entities or attributes. For this reason, the tags are also called Semantic Identifiers (SIDs).

The best of way of illustrating how CISL works is by considering an example. The statement

(Hostname „frigg.uio.no‟) is a simple S-Expression. It groups two terms, without semantically binding

them. One can guess that it refers to a computer system with the FQDN name „frigg.uio.no‟, but the

true meaning of the statement is still vague. In fact, the full semantic meaning of S-Expressions

becomes apparent when one forms more complex S-Expressions, by means of combining several SIDs

into a sentence. Figure 8.1 provides an example of a CISL sentence.

(And

 (OpenApplicationSession

 (When

 (Time 14:57:36 24 Feb 2004)

)

 (Initiator

 (HostName 'outside.firewall.com')

)

 (Account

 (UserName 'tom')

 (RealName 'Tom Attacker')

 (HostName 'frigg.uio.no')

 (ReferAs 0x12345678)

)

 (Receiver

 (StandardTCPPort 22)

)

)

 (Delete

 (World Unix)

 (When

 (Time 14:58:12 24 Feb 2004)

)

 (Initiator

 (ReferTo 0x12345678)

)

 (FileSource

 (HostName 'frigg.uio.no')

 (FullFileName '/etc/passwd')

)

)

 (OpenApplicationSession

 (World Unix)

 160

 (Outcome

 (CIDFReturnCode failed)

 (Comment '/etc/passwd missing')

)

 (When

 (Time 15:02:48 24 Feb 2004)

)

 (Initiator

 (HostName 'hostb.uib.no')

)

 (Account

 (UserName 'ksimpson')

 (RealName 'Karen Simpson')

 (HostName 'frigg.uio.no')

)

 (Receiver

 (StandardTCPPort 22)

)

)

)

Figure 8.1: CISL sentence syntax example

The CISL sentence of Figure 8.1 could be translated in the following plain English translation:

“On the 24
th

 of February 2004, three actions took place in sequence in the host „frigg.uio.no‟. First,

someone logged into the account named 'tom' (real name „Tom Attacker‟) from a host with FQDN

'outside.firewall.com'. Then, about a half-minute later, this same person deleted the file '/etc/passwd' of

the host. Finally, about four-and-a-half minutes later, a user attempted but failed to log in to the

account 'ksimpson' at 'frigg.uio.no'. The attempted login was initiated by a user at 'hostb.uib.no'.”

The particular CISL sentence describes a malicious attack that erases an important system file of a

UNIX system and consists of three multi-SID S-Expressions. In general, a sentence can be formed by

one or more S-Expressions nested at different levels. However, there are strict rules that allow the

nesting of S-Expressions. The rules are defined by the nature of the SIDs, as there are several different

types of them.

Every CISL sentence must contain at least one verb SID (in the example „Delete‟), denoting some sort

of action or recommendation. Verb SID‟s are joined together in a sentence by conjunction SIDs. In the

previous example „And‟ is the conjunction SID that holds together the three SIDs that form the

sentence. In addition, a CISL sentence might employ role, adverb, attribute, referent and atom SID

 161

types. There are additional SID types but the aforementioned ones are the most commonly employed

ones.

Role SIDs indicate what part an entity plays in a sentence (such as „Initiator‟). Adverb SIDs provide

the space and time context of a verb SID. Attribute SIDs indicate special properties or relations

amongst the sentence entities, whereas atom SIDs specialise in defining values that are bound to certain

event instances (for instance „Username‟). Lastly, referent SIDs allow the linking of two or more part

of a sentence („Refer to‟ and „Refer as‟).

The wealth of SID types increases the semantic expressiveness of the language, but there is also a

structural hierarchy for forming complex sentences that also contributes to the semantic meaning. This

semantic structure is similar to the syntax of natural languages. A verb SID is always at the heart of

every CISL sentence and is followed by a sequence of one or more S-expressions that describe the

various entities that play parts in the sentence, or qualify the verb. As a result, under a verb SID one

can find nested S-expressions headed by a role SID. Under the role SID, one can find atom and adverb

SIDs.

This hierarchy is rigid and forms part of the CISL language. A similar hierarchy can be observed in the

formation of file and network level ITPM expressions in chapter 6.

The second part of the CISL language specification [134] is concerned with the encapsulation of the

structured semantic information into the Generalised Intrusion Detection Object (GIDO). GIDOs are

data structures that hold the encoded event information. The purpose of encoding the information in a

standard way is to make the process of exchanging the information amongst various CIDF components

easy, in order cross-vendor IDS interoperability recipes.

Unfortunately, despite the well-conceived interoperability target, the CISL GIDO encoding process

introduced many problems. Doyle [135] has criticized many of the aspects of the CISL GIDO structure.

Although the purpose of the document was to evaluate the fitness of CISL for use in the DARPA Cyber

Command and Control (CC2) initiative, the paper locates serious inadequacies that concern the CISL

 162

time resolution data representation facilities, as well as data throughput limitations caused by the fixed

size of the GIDO data structure. Finally, Doyle comments on the lack of support for the next generation

Internet Protocol (Version 6). Whilst these points are fair, they could easily be corrected by making the

necessary changes to the relevant data types and overcome the perceived obstacles. In fact, section 7 of

the CISL standard [134] contains specific guidelines that explain how to add information to a GIDO, to

clarify or correct its contents. This suggests that the encoding principles are certainly extensible.

A more serious aspect of Doyle‟s critique [135] refers to the semantic structure of the CISL language.

In particular, his criticism that CISL has “no facilities for representing trends or other complex

behavioural patterns; ill-specified, inexpressive, and essentially meaningless facilities for representing

decision-theoretic information about probabilities and utilities” indicates that the language would be a

bad choice for describing information about a threat prediction model. The basic reasoning behind this

critique is that CISL is too report-orientated and threat mitigation requires a different level of

information, not just mere report structures of what is happening on one or more systems. These indeed

represent more serious limitations that would require a more radical re-design of the CISL.

In response to the CISL encoding limitations, the IETF Intrusion Detection Exchange Format working

group [30] took over the scope of the CIDF work. It addressed most of the GIDO encoding issues by

introducing a new Object Oriented format for encoding and transmitting Intrusion Detection related

information. The Intrusion Detection Message Exchange Format (IDMEF) [136] enriched the type of

standardized information that IDS sensors may represent, as well as the process of standardizing the

exchange of messages using protocols such as IDXP [137] and data exchange languages such as XML

[138].

For example, the IDMEF „Confidence‟ and „Impact‟ classes can now be used to represent decision

theoretic information [136]. The earlier can assign a confidence and thus a probability to an observed

event, whereas the latter relates privilege escalation consequences to three broad severity levels. This

functionality can server as the basis for encoding probabilistic information, in order to use it in a threat

prediction model such as the ITPM.

 163

These standardization features were lacking from the previous CIDF platform and they constitute a

very important step towards establishing better interoperability amongst different IDS products.

However, at the time of writing, the working group has not managed to correct and standardize the

semantic structure of the CISL language. The IDMEF draft standard [135] proposes encoding and data

structures, but it does not suggest semantic guidelines like the ones proposed by the CIDF framework.

For IDMEF, the term „language‟ refers to the data types and encoding principles for IDS data and not

to the syntactical guidelines of an Intrusion Specification Language.

Figure 8.2: Insider Threat Prediction Specification Language data flow

Hence, if one wishes to establish an Intrusion Specification Language tailored to Insider Threat

Prediction, he would have to adopt the basic syntactic guidelines of the CISL and address the syntactic

inadequacies indicated by Doyle [134]. After the semantic refinement step, an effort to match the

suggested ITPM expression data to the IDMEF data structures should take place. This will ensure that

the ITPM architecture would be fully compliant with the relevant standards of the research field, in

order to be interoperable with many IDS products. The last step would be to write the language

compilers and link them to the signature construction tools. Figure 8.2 illustrates the process of turning

a CISL-based plain text description into a multi-level threat prediction signature (section 6.4 of the

thesis).

CISL-based

Language

Compiler

Threat

description

in CISL-

based

language

ITPM

Database

'Signatures'

Table

IDMEF

DATA

Types

ITPM

multi-level

signature

Constructor

 164

The process of refining the original CISL semantic schema would enrich the original language by

adding new atom and adverb SID types that represent decision-theoretic and probabilistic information.

These new SID types would relate network, file and command execution to weight matrix options, so

that a full multi-level threat prediction signature could be constructed.

The process of matching the ITPM proposed data to the IDMEF event classes should also not pose a

major problem. Weight Matrix data could be represented by the confidence attributes of the

aforementioned IDMEF „Assessment‟ class. User privileges can be represented by the „Impact‟ class.

In addition, there are plenty of IDMEF data structures that can represent information related to the file,

network and command execution ITPM components. The „FileList‟ and „FileAccess‟ classes contain

adequate attributes to represent the file attributes. The „Address‟ class can represent network related

data, and lastly, the „Process‟ class could accommodate most of the requirements of the command

execution data of the ITPM architecture.

The fact that the IDMEF draft standard has similar data type mappings with the proposed ITPM

architecture indicates that the research project has moved on the correct track when it comes to IDS

interoperability. However, the process of constructing complete semantic frameworks and performing a

correct one-to-one mapping between the ITPM and IDMEF data types is a formidable task.

In addition, one would have to write the complete language compilers and prove the effectiveness of

the deduced language on real-world scenarios. For these reasons and although this research project has

emphasized the importance of deducing such a language, it could not accommodate the production of

the Insider Threat Prediction Specification Language within the available time scales. Nevertheless, it

provided a strong foundation for the building of the language by abstracting the problem domain and

suggesting formats for the encoding of the threat prediction signatures.

 165

8.4 Epilogue

This final chapter has provided a critique of the overall project by discussing the accomplishments as

well as the limitations of the produced ITPM architecture. In essence, the goal of the thesis was to shed

light to the problem of insider misuse in IT systems and propose novel ways to estimate forthcoming

insider threats. The goal of these threat estimation techniques was not to provide a panacea against all

the malicious or accidental actions of legitimate users but a complement to existing security monitoring

tools.

Whilst the thesis has managed to offer a comprehensive picture of the nature and the magnitude of the

legitimate user misuse, the proposed novel ITPM architecture needs further research and development

efforts prior proving itself as a reliable, production-grade system that mitigates the problem of insider

threats. The lack of formal insider misuse case data repositories limits the necessary validation and

testing efforts of the devised model. In addition, the perceived complexity of the model necessitates the

development of an Insider Threat Prediction Specification Language, in order to increase the flexibility

and compliance of the model with the new standards of the IETF Intrusion Detection Message

Exchange Format Working Group [30].

Nevertheless, the proposed ITPM architecture with all of its novelties and imperfections presents a step

forward in the Insider Misuse Threat mitigation field and will hopefully inspire researchers to improve

and complete their own frameworks that address the same problem.

 166

Appendices

Appendix A: Commercial IDS vendors

The main body of the thesis discusses many IDS efforts that originated mainly from an academic

research and development environment. Although it is outside the scope of this thesis to provide a

detailed overview of the functionality of commercial products, IDS vendors have presented their own

solutions. It is worth devoting an Appendix to look at the various IDS paradigms they introduce and

see their advantages and disadvantages in relation to existing academic efforts.

It should be noted that the contents of the following paragraphs do not address the wealth of existing

commercial products for two reasons:

- It is impossible to review every single product of the large and rapidly expanding IDS market.

- The cost of some commercial products and the „closed source‟ model made it impossible to

investigate their functionality in a detailed manner.

With these factors in mind, the following paragraphs present the generic philosophy of commercial IDS

designs.

Most well-known IDS products follow employ both of the major IDS detection engines described in

Chapter 2 of the thesis. Chapter 2 outlined the strengths and weaknesses of Misuse and Anomaly

Detection methodologies. Commercial IDS Vendors combine these techniques in their effort to reduce

the Detection efficiency of their products. This is an idea that was originally introduced in the

Academia, with the development of the first Intrusion Detection System Frameworks.

Hence, it could be argued that from an algorithmic novelty point of view, commercial IDS systems

present no radically new elements. Their novelty lies mainly in the area of improving these algorithms

in terms of computational efficiency.

SNORT [34] is an Open Source Intrusion Detection System that is however sponsored and partly

developed by „SourceFire Incorporation‟, a commercial company that specialises in Intrusion

Detection. It uses misuse detection to analyse network and (in some modes) host related data. The

 167

latest version of the product (Version 2.0) utilises a misuse detection engine that is based on Wu and

Manber‟s work on a Fast Pattern Matching Algorithm [35]. The algorithm was developed in academia

and it increases the effectiveness of misuse detection by performing multiple searches on pre-selected

intrusion signatures. The end result is that the runtime of the detection process is substantially reduced

by utilising a combination of light-weight processes and memory management techniques.

The novelty of the SNORT product is the application of this algorithm to its own proprietary Rule

Definition Language, in order to increase the effectiveness of the misuse detection process [35]. Wu

and Manber‟s algorithm was established with reference to the generic pattern matching domain and it

was not developed with IDS designs in mind. However, „SourceFire‟ developers have constructed their

own framework, in order to apply this algorithm to the IDS problem domain. This framework marketed

with the name „Real Time Network Awareness™‟ consists of the SNORT Rule Definition Language, a

bespoke implementation of the misuse detection engine and often pre-configured hardware systems

that run the IDS engine on a highly customised Operating System [37].

The approach of combining customised hardware and an Operating System to run IDS software is

another distinct trend of commercial products, creating „turnkey solutions‟. These types of solutions

are favourable by the commercial world, as they require less specialised resources to deploy them and

they are more easily manageable than software solutions. „(nfr) (security)‟ [38] is a widely respected

Network IDS vendor that delivers the „NID‟ family of turnkey solutions. These systems consist of a

client-server system that is accompanied by sensor boxes. The client is an administration Graphical

User Interface (GUI) that normally runs on a Windows –based workstation. The server houses the

„turnkey‟ box and the sensors consist of software components installed in various places of an IT

infrastructure, as figure A1 illustrates.

Another distinct trend of commercial IDS solutions is the continuous integration of IDS and network

management systems (NMS), a feature that is not addressed in academic designs. An NMS is a

software solution that allows IT specialists to configure, troubleshoot and objectively characterise the

performance of a computing infrastructure in an efficient manner [39]. The Simple Network

Management Protocol (SNMP) Version 3 [40] as well as the Remote Monitoring (RMON)

Management Information Base [41] are two standardised protocols that are employed to achieve the

 168

NMS/IDS integration. As a result, the NMS functions of configuration, fault and performance

management embed IDS functionality and use the wealth of information provided my NMS sensors to

feed IDS engines with valuable data for the status of the IT infrastructure.

Figure A1: NFR Security IDS architecture

The „RealSecure‟ IDS engine from Internet Security Systems (ISS) [42] was one of the first examples

that addressed the issue of NMS/IDS integration. It can utilise the well-known Hewlett Packard‟s

„Open-View‟ NMS engine [43] as an underlying mechanism for collecting real-time data from several

components of the IT infrastructure. Other IDS vendors follow similarly layered approaches in their

design of their products.

Whilst the majority of commercial IDS designs tend to address mainly the problem of externally

initiated attacks, the same cannot be said about internal attacks [44]. Clearly, features such as internal

activity tracking represent a new trend in commercial IDS products. The „e-trust‟ software suite by

„Computer Associates‟ [45] is a classic example of a comprehensive IDS tool, which analyses a series

 169

of system log files and helps system administrators pinpoint employee activities. The monitored

activities include e-mail and web page visits for each individual user. The „Fire-Marshal‟ IDS series of

„Palisade Systems‟ [46] is also another case of Insider activity tracking tools. Apart from the usual

employee web and e-mail monitoring facilities, the „Fire-Marshal‟ product includes the ability to

measure network bandwidth consumption violations and block certain access attempts via certain

network endpoints, providing a comprehensive engine for the detection of certain internal activities.

Critique of commercial IDS offerings

There is no doubt that commercial vendors have contributed towards the acceptance of the IDS concept

in the IT world by improving the performance of the IDS engines as well as making products that can

be easily deployed and maintained. However, the fundamental IDS design challenges are still not

addressed.

 Commercial IDS solutions still suffer from false negative/positive alarms, another indication of their

non-existing algorithmic novelty. Consequently, there is still plenty of room for research and

development on improving the efficiency of anomaly and misuse detection algorithms.

The usability, performance enhancement and NMS integration features are very useful in developing

real-world applications. However, they have created a number of other problems that affect

interoperability functions amongst different IDS products.

Modern IT infrastructures are non homogeneous. An IT security architect often has to choose amongst

many products to provide the optimum solution for a number of Data Security problems. Whenever

these products are not able to exchange data efficiently, the entire process becomes a burden and the

architect is often locked to expensive and inefficient single vendor solutions.

This is a very familiar picture in the commercial IDS world. For the great majority of the products, it is

impossible to exchange IDS-related data. Intrusion signatures and anomaly detection rules are vendor-

specific. Normally, they cannot be shared amongst different products. Some vendors have recently

considered the exception to this rule and they made their products recognise rules and signatures from

 170

other vendors. However, currently this is considered as an add-on feature rather than standard

functionality.

An additional negative point of some IDS vendors is the level of automation they introduce in the

process of configuring and deploying their products. The previous section gave a brief overview of

„turnkey‟ solutions. These solutions are marketing the easy deployment and maintenance features and

their vendors always emphasize the minimum level of training required, in order to operate the product.

However, the policy of not maximizing the training of IT staff on security or hiring Data Security

specialists to protect your IT assets for the purposes of reducing the operating costs is a dangerous

practice. Effective Data Security cannot be achieved by the deployment of usable and automated

products that you place in your network and you forget about them. An IT infrastructure always needs

knowledgeable specialists that can further customise these products to suit the needs of their

organisation.

For all these reasons, despite the existence of a vast market of IDS turnkey product solutions, research

and development issues that concern key IDS algorithmic concepts is still in a state of flux, leaving

plenty of room for further research and development efforts.

 171

APPENDIX B: CSI/FBI 2003 Computer Crime Survey

Table B1: The cost of Computer Crime according to the 2003 CSI/FBI Survey

 172

Appendix C: Insider IT Misuse Survey Questionnaire

Identification information:

You don't have to complete the following five fields. However, if you wish to do so, please make sure

that you fill in at least the 'Name of Organisation/Company' and the 'Address' fields. Please use the

TAB key or the mouse cursor (left click) to move to the next input field.

 Name of Organisation/Company

 Name of Employee

 Address

 City

 Postal Code

 Telephone

 Email

 Country

Part A

1)What is your role inside your organisation/company?

 - System Developer ___

 - Security Specialist/

 Consultant ___

 - System Administrator ___

 - Manager/Director/CEO ___

2)How many years of experience do you have in this role?

 173

 - One Year ___

 - Two Years ___

 - Three Years ___

 - Four Years ___

 - More than Five Years ___

3)In which of the following IT sectors does your

company/organisation belong?

 - Financial ___

 - Education ___

 - Defense ___

 - Manufacturing ___

 - Internet Service Provider ___

 - Hardware/Software Vendor ___

- Utilities (Electricity/

 Water Supplies…) ___

- Government ___

- Transportation ___

4)State the number of desktops in your organisation.

 - 1-10 ___

 - 20-50 ___

 - 50-100 ___

 - 100-500 ___

 - 500-1000 ___

 - 1000-5000 ___

 - 5000 + ___

5)Does your organisation employ a 'firewall' and/or

antivirus and/or data encryption product?

 - Yes, we use these technologies ___

 - Yes, but they are not very effective ___

 174

 - No, but we are thinking of installing them ___

 - No, and we believe we do not need them ___

6)Does your organisation employ an Intrusion Detection

System?

 - Yes, we use IDS technology ___

 - Yes, but it is not very effective ___

 - No, but we are thinking of installing it ___

 - No, and we believe we do not need it ___

7)Which of the following Operating Systems do you employ

in your business/organisation?

- Microsoft Windows NT 4 Server/Workstation ___

- Microsoft Windows 9x (95,98, 98 SE/ME) ___

- Microsoft Windows 2000 ___

- Novell Netware ___

- UNIX-like (HP-UX,SOLARIS,AIX,LINUX...) ___

- Other (please specify) _________

Part B

8)How many IT security incidents did you approximately

have since January 2001?

 - 1-5 ___

 - 5-10 ___

 - 10-20 ___

 - 20 + ___

9)Would you say that the great majority of the incidents

were due to actions from:

- An unknown origin (I don’t know if the

Origin was internal or external) ___

 - Legitimate users of your organisation ___

 - Unauthorised users outside your organization ___

10)In case you have experienced 'insider' incidents,

would you say that most of the incidents were the result

of:

 175

 - An accident ___

 - An intentional action (no accident) ___

 - I don’t know if it was intentional or accidental ___

 - Not applicable ___

11)Did an identified 'insider' incident result in a

substantial financial loss for your company/organisation?

You might also like to include in this answer the cost of

any legal procedings (see questions 12 and 13).

 - We lost a considerable amount of revenue ___

 - We have not lost a considerable amount of revenue ___

- We have not lost any money as a result of the

 the incident ___

- Not applicable ___

 Estimated Lost Revenue (Optional) ______________

12)Did an identified 'insider' incident result in legal

prosecution of your company organisation, as a result of

an action related to the incident?

- Yes, unfortunately, we were prosecuted. ___

- No, we were not prosecuted ___

13)In cases you successfully identified employees

misusing IT resources, did you think it was necessary to

prosecute them?

- Yes, we did prosecute employees. ___

- No, we did not prosecute employees ___

 176

Part C

14)Which of the following actions would you your IT

security policy consider as insider misuse (Please tick

all that apply)?

-Attempt to use an installed application (or range of applications)

without authorization ___

-Attempt to install an application (or range of applications) without

authorization ___

- Attempt to attach hardware peripherals to desktop systems without
authorisation. ___

- Use a particular IT resource (CPU time, network bandwidth..)

excessively. ___

- Use the IT resources extensively for purposes other than work (ie

Internet Job browsing). ___

15)If you were designing a security pre-employment

screening procedure for candidate employees, what would

you think is the most important piece of information that

should be included in the screening policy?

- Credit difficulties of the candidate employee ___

- Criminal record of his/her family ___

- Level of IT security knowledge ___

- Validation of reasons for leaving previous jobs ___

- None of the above ___

16)Which of the following constitutes the most indicative

source for signs of insider misuse incidents?
- Operating System Log files (audit trails) ___

- Application specific log files ___

- Specialised security log files ___

- Social Engineering (chat, rumours, etc) ___

- Information from pre-employment screening procedures ___¨

 177

- The content of the web pages that the user visits ___

- E-mail content ___

- User generated Network Traffic (type and amount) ___

17)Do you believe that the level of IT

knowledge/sophistication of a user could potentially

indicate the likelihood of the user abusing the IT

infrastructure?

- Yes, sophisticated users are more likely to abuse their systems

- No, user IT sophistication is not important

18)Based on the experience you gained from the occurred

insider incidents, which of the following types of IT

misuse incidents do you think that an insider is most

likely to initiate?

- Email abuse (spam or abusive defamatory material)

- Computer virus implantation

- Theft of confidential information

- Physical vandalism of It components

- Installation of illegal software

- Downloading pornographic material from the Internet

 178

Appendix D: How a misconfigured system can be susceptible to an

insider Denial Of Service attack.

The Incident background:

The presentation of this incident is a result of an external consultancy project that involved the analysis

of a commercial LINUX departmental file server. Around 21:00 hours in the evening of the 14
th

 of

September 2003, one of the late night users of the machine had noticed that the system started

becoming slow. It then refused to provide access to the shared user areas via both the NFS and

CIFS/SAMBA services. It would even refuse access from the root super-user which meant that the

system was unusable. It would later become obvious that this was the result of a Denial of Service

attack. The attack was initiated by a legitimate user of the system, with no escalated privileges in the

server. It took the company two working days to restore the system back to a production state. The

company name and some of the system details have been omitted from this report.

The data collection and laboratory setup methodology:

After removing the system from the Data Network, a LINUX rescue system disk was created (a

modified version of Tom‟s BRT floppy) to boot the server with a bespoke mini-root filesystem and

WITHOUT booting from the original system partitions. The goal was to preserve valuable data from

the client as well as evidence for forensic analysis purposes. Thus, the „dd‟ image utility was then

utilized, in order to make an exact image of the system partitions (including the system‟s boot sector)

to an external USB high-capacity portable hard disk drive. The drive was then taken to the author‟s

own private laboratory for further analysis.

The USB high capacity drive was then used once more with the dd utility to copy the retrieved system

partitions and boot sector to a hardware-compatible system with empty hard disks. In that way, the

exact content of the partitions retrieved from the client would be preserved without interference

induced by the examination procedure.

The forensic analysis of the system:

The system was booted with all the partitions and the boot sector. An attempt to login as „root‟ was

unsuccessful. The system recognized the super-user account, but the login process would terminate

before providing access to the shell prompt. As a result, the rescue disk was used once more to boot the

system to a mini-root filesystem.

The „original‟ filesystem was then mounted on an alternative mount point, in an attempt to find the

reason for the login failure. After issuing a query for the file space capacity of the system, it

immediately became evident that the root partition was full:

[root@rescuesys root]$ cd /mnt/oldroot; df -h ./

Filesystem Size Used Avail Use% Mounted on

/dev/hda1 1012M 961M 0 100% /mnt/oldroot

As the /var and /tmp partitions were under the / partition, this meant that the system logging functions

(normally under /var/log, the mail spool (usually under /var/spool/mail), as well as other applications

that depend on available temporary file space would be unable to operate. This fact was probably a

good reason to explain the super-user login failure. Indeed, an examination of the standard user login

scripts (in a linux system are normally under /etc and /etc/profile.d directories) revealed that the

company had used a bespoke scripting solution that would kill the shell login procedure, if the shell

process would not be able to create a file on the user‟s home directory. In this particular case, the user

was root, the home of the root user is under / and the / partition was full. A removal of this rule from

the profile scripts and a reboot, allowed the superuser login to complete properly.

Now, the partitioning scheme of the „live‟ system looked like this:

 179

[root@fileserv01 /]# df -h

Filesystem Size Used Avail Use% Mounted on

/dev/hda1 1012M 1012M 0 100% /

/dev/hda5 400.0G 399.9G 0 100% /home

none 90M 0 90M 0% /dev/shm

/dev/hda2 4.0G 2.9G 892M 77% /usr

/dev/cdrom 267M 267M 0 100% /mnt/cdrom

Immediately, the fact that the /home partition was full was observed. This obviously explained the

failure of other users to login and use (particularly write to) their home areas. The next logical question

is obviously „which application(s) is/are responsible for this result and who invoked them‟.

The first step in answering this question is what were these areas filled up with. A quick look at the /

partition by means of using the du utility revealed that the root partition had a lot of data under its /var

subdirectory, accounting for 804 of the 1012 Megabytes available to the partition.

[root@fileserv01 /]# du -m -s /var

804 /var

The first suspicion was a logging or mail spool process that went out of control, but after examining the

directory hierarchy under the /var subdirectory the guilty file was found. Under /var/tmp there was a

strangely looking file with a size of 748 Megabytes. The file was just full with null bytes and contained

no further information.

[root@fileserv01 tmp]# ls -lh

total 749M

-rw-rw-r-- 1 usr547 usr547 748M Sep 14 20:43 jj123-ssh

In addition, the owner of the file was user547. After quickly calling the company‟s personnel

department, it was established that user547 was an applications programmer working as a software

development consultant, who had just completed a large software project with the company.

In an attempt to discover what was the real connection of that file and that particular system user, the

interest has shifted on users547 home area. We then examined an archived UNIX Shell history file

(.bash_history) for this particular user, kept in a non-user accessible location by the system

administrator

 1 ls

 2 cd /var

 3 touch test

In these three commands, the user attempts to see if there write permissions on the /var directory, by

trying to create a test file. This particular operation would fail, since at the top level of /var/tmp only

the super-user (root) accounts write access.

 4 man dd

 5 ls

 6 ls -la

 7 cd lock

 8 ls

 9 touch test

 10 ls -la

 11 cd ..

 12 ls -la

 13 cd tmp

 14 ls

 15 pwd

 16 touch test

 17 ls –la test

 180

 18 rm test

These commands help us start shaping a better picture of the scene. Here, user547 tries to identify

useful options for a system level administrative command that performs low-level file manipulation

(4). It then moves down to several subdirectories (always under the /var/tmp subdirectory), trying to

find a suitable place where he has write access (5-15). Eventually, he discovers that /var/tmp can

provide him with write access and he creates a file to test for write access permissions. When he is

convinced about the ability to write he removes the „test‟ file (16-18).

 19 ls –la /dev/zero

 20 dd if=/dev/zero of=/var/tmp/jj123-ssh

 21 cat /var/log/messages

These commands are very indicative of the user intentions. Command no.20 creates (when non-

interrupted) a file composed of null (\0) characters that can fill the entire partition. It is a quick and

easy way to fill up disk space (or test disk performance in other circumstances). Command no.21

probably justifies the user to see what was logged from the system. If the partition becomes full,

syslogd would report this fact to the „messages‟ log file. However, if the /var partition becomes full,

syslogd will not be able to log any kind of information. Hence, the fact that the user examined this log

file after performing the dd operation could potentially mean that he was trying to establish whether

filling up the /var partition managed to stop the logging daemon from doing its job or not.

 22 rm /var/tmp/jj123-ssh

 23 sync

 24 df -h

 25 cd ~

 26 vi .testflags

 27 chmod 700 .testflags

 28 nohup ./testflags

 29 exit

After removing the created file, the user then moves back to his home area and creates a script. He then

decides to execute this script with nohup option (the job continues to execute after the user exits his

shell session). The content of the script is very indicative of the user‟s intentions and is analyzed below.

1 touch $HOME/resultat

2 dd if=/dev/zero of=/var/tmp/jj123-ssh > /dev/null

3 dd if=/dev/zero of=$HOME/.fillupwithnots > /dev/null

4 $HOME/cloaxck $HOME/nohup.out $HOME/bash_history $HOME/.testflags

It is not clear what was the intention with line 1.Lines 2 and 3 show the application of the dd utility to

fill up first the partition of the root partition (where /var resides, so that syslogd will be disabled) and

then the entire /home area (where all the user directories reside).

When the desired actions have been achieved, line 4 employs a known utility that will securely erase a

number of files, in order to destroy any evidence of his actions. The terms „securely erase‟ mean that

the files will be truly erased from the hard disk, so that „file undelete‟ utilities will not be able to

recover them. Should the malicious insider had invoked the shell‟s „rm‟ command, the files would not

have been accessible deleted, but it might have been possible to recover them with a suitable file

recovery utility. Hence, the user tried to erase the nohup.out file (created by the fact he started the

execution of his malicious shell script and then he logged off), his shell history file (that would reveal

all his suspicious investigations) and finally the malicious script itself.

There were additional steps to ensure that these files were indeed created by this particular user and not

by someone masquerading as user547. This involved the process of cross-referencing data from the

LINUX „lastlog‟ utility (which associates a particular user login to a date/time and workstation IP

address) and information that verified that the particular person was physically present and using a

workstation at that particular time.

 181

This would have been the perfect insider attack. However, the attacker made two serious mistakes that

prevented him from erasing the traces of his actions. Firstly, he mistyped the name of his shell history

file (.bash_history as opposed to bash_history that he typed). This caused the cloaxck utility to abort, so

neither the .bash_history nor the .testflags malicious script was erased. The second factor that

connected the incident with this particular user is the fact that the large files that filled the system‟s

/root and /var partitions carried the identity of user547. However, should the malicious insider have

been successful in erasing the script and the shell history file, it would have been impossible to

discover if he was really responsible for the incident or not.

Conclusions:

The incident shows how the operation of a relatively healthy system can be discontinued from an

insider. Although many system administrators could argue that a departmental file server should

always have a „disk quota‟ mechanism installed and that /var and /root partitions should be separate,

the incident has clearly indicated that:

- A knowledgeable insider can find ways to disrupt the operation of a system, exploiting its

weak points.

- The applications that a particular insider executes and the impact they have on the

computational resources of a system (storage space, memory, CPU time) could potentially

indicate their level of knowledge and their intentions.

 182

Appendix E: ITPM system source code

E1) Global monitoring script

 #!/usr/bin/perl -w

#This is the global monitoring script -- Globalmon -- Version 1.2

beta

#(C) By George B. Magklaras - November 2002

#Essential Sanity checks...

@whoami=getpwuid($<);

die "Error:You should execute this program ONLY with root privileges.

You are not root.\n"

if ($whoami[2]!=0 && $whoami[3]!=0);

#START/END SHELL SESSION MARKERS

#Strings used to mark the beginning and the end of

#a user's interactive shell session. They are vital

#in quantifying metrics such as FBreadth etc...

#--PS: This technique is still NOT EFFECTIVE for MULTIPLE SESSIONS

I NEED TO IMPLEMENT A GLOBAL MONITOR via the ps command.

AND NOW I HAVE -- Dec 2003

$STARTMARK="###BEGSHELLSESSION###";

$ENDMARK="###FINSHELLSESSION###";

#Check if there is another monitoring process running.

#There should be ONLY one.

#$running=`ps auxwww | grep globalmon.pl | grep -v grep | grep -v vi

| wc -l`;

#debug

#print "running has a value of $running .\n";

#die "Error: Exiting, there is another globalmon process already

running.\n"

#""if ($running ne "1");

#If there is not another process running, did the previous one

#exit in a clean way?

die "Error: Exiting, the previous globalmon process did NOT exit

properly. Rerun itptmon stop.\n"

if (-e "/var/run/itptmon.pid");

#At this point, we should be OK, so we can start initialising the

environment

die "Error: Exiting, cannot access the pid control file.\n"

if (!(open PIDCONTROL, ">/var/run/itptmon.pid"));

$loopcontrolvar=1;

while ($loopcontrolvar) {

@loggedinusers=`ps auxwww | cut -d' ' -f1 | grep -v USER| grep -v

root | uniq `;

foreach $user (@loggedinusers) {

 chomp $user;

 183

 }

print "itptmon has started.\n";

foreach $loggeduser (@loggedinusers) {

 $username=$loggeduser;

 if (!(-e "/var/log/.analysis$username")) {

 unless (open ANALYSIS, ">/var/log/.analysis$username") {

 die "Error: Cannot create the analysis file for

user $username due to: $!";

 }

 $startdatestring=`date +%Y%m%d%H%M%S`;

 $yearofstart=substr($startdatestring,0,3);

 $monthofstart=substr($startdatestring,4,2);

 $dayofstart=substr($startdatestring,6,2);

 $hourofstart=substr($startdatestring,8,2);

 $minofstart=substr($startdatestring,10,2);

 $secofstart=substr($startdatestring,12,2);

 print ANALYSIS "###$STARTMARK\n";

 print ANALYSIS "###AAAYEAR:$yearofstart\n";

 print ANALYSIS "###AAAMONTH:$monthofstart\n";

 print ANALYSIS "###AAADAY:$dayofstart\n";

 print ANALYSIS "###AAAHOUR:$hourofstart\n";

 print ANALYSIS "###AAAMIN:$minofstart\n";

 print ANALYSIS "###AAASEC:$secofstart\n";

 print ANALYSIS "###AAAZZZZZZZZZZZZ\n";

 close ANALYSIS;

 #Now that we have closed the file descriptor we can fork

 #the monitoring scripts.

 #First the cmdparser.pl

 #This bit of code here uses the UNIX process management model

 #It will almost certainly need modification for Windows 2000/XP

 defined(my $pid=fork) or die "Error: Cannot kickstart cmdparser

due to: $!";

 unless ($pid) {

 exec "/usr/local/bin/cmdparser.pl", "$username";

 die "Error: Cannot kickstart cmdparser due to: $!";

 }

 #Maybe I should put some DoS protection code here

 #just in case something attempts to fork too many processes!

} else {

 #Well if the file exists, it is best to do nothing, as the

handling of the ENDMARK

 #insertion is done further down on another loop. Here we set a

bogus variable.

 $fexists=1;

}

} #end of foreach loop for loggedusers data

#Now rest a bit and then check if the same users are still logged in

#It is important that we 'system' the sleep command

#in order to force the program to wait.

system "sleep 5";

 184

@loggedinusersb=`ps auxwww | cut -d' ' -f1 | grep -v USER| grep -v

root | uniq `;

foreach $user (@loggedinusersb) {

 chomp $user;

 }

#And now see who has logged out. We can use PERL's grep and map

#specialist loops to achieve this.

#However the fastest way is to build a hash of the loggedinusersb

array

#and use it as a lookup table.

%lookup=();

@notloggedanymore=(); #(belonging to the loggedinusers array only)

foreach $currentlylogged (@loggedinusersb) {

 $lookup{$currentlylogged} = 1;

}

foreach $checkeduser (@loggedinusers) {

 unless ($lookup{$checkeduser}) {

 push(@notloggedanymore, $checkeduser);

 }

}

#How many analysis files do we have (EXCLUDING the .analysisb and

.analysisc files!)?

#@listoffiles=chomp(`ls -1 .analysis* | grep -v .analysisb* | grep -v

.analysisc*`);

foreach $loggedoffuser (@notloggedanymore) {

 unless (open ANALYSIS, ">>/var/log/.analysis$loggedoffuser") {

 die "Error: Could not mark the end of the session for

user $loggedofuser due to: $!";

 }

 $enddatestring=`date +%Y%m%d%H%M%S`;

 $yearofend=substr($enddatestring,0,3);

 $monthofend=substr($enddatestring,4,2);

 $dayofend=substr($enddatestring,6,2);

 $hourofend=substr($enddatestring,8,2);

 $minofend=substr($enddatestring,10,2);

 $secofend=substr($enddatestring,12,2);

 print ANALYSIS "$ENDMARK\n";

 print ANALYSIS "###ENDYEAR:$yearofend\n";

 print ANALYSIS "###ENDMONTH:$monthofend\n";

 print ANALYSIS "###ENDDAY:$dayofend\n";

 print ANALYSIS "###ENDHOUR:$hourofend\n";

 print ANALYSIS "###ENDMIN:$minofend\n";

 print ANALYSIS "###ENDSEC:$secofend\n";

 print ANALYSIS "###ENDZZZZZZZZZZZZ\n";

 close ANALYSIS;

 }

 } # end of while loop

 185

E2)Command Register Script

#!/usr/bin/perl -w

#cmdregister script -- Version 1.8beta, (C) George B. Magklaras --

JUNE 2003

#SYNOPSIS: This script does most of the work. It extracts the

commands from

#/var/log/secure (where snoopy does its logging by default), taking

care and correlating

#data from multiple sessions on a single host. It takes a single

argument, which is the user name

#and when the user logs out it produces a session that contains all

the user commands

#in shell history file form.

CHANGELOG: From version 1.7beta to version 1.8beta

#- Small re-design of the implementation of the Fdepth function. We

know report to the

$USRNAMEsessid file only the following data:

noofcommands (strictly per session data)

Fbreadth (striclty per session data and then averaged)

totappscore (fappscore is going to average commands

from all sessions)

SCPU (fappscore is going to average CPU util

from all sessions)

SRAM (the same as SCPU)

SIMAPPS (strictly per session data and then averaged)

Then the usermon function will have the task of averaging the

numbers and evaluating

fappsscore and other data, bringing it to the database (a file for

now and later an RDBMS).

CHANGELOG: From version 1.6beta to version 1.7beta

#- An additional fault has been discovered with the Fbreadth

function. After inspecting

manually a number of $USRNAMEsessid files, they all had the same

value for Fbreadth (3).

This was due to incorrect conditional expressions. Fixed. Also

included some extra weights

on the constants for Fbreadth, to accommodate for the start and

end shell sesssion commands

(things such as dircolors, startsession, endsession, clear, etc).

CHANGELOG: From version 1.5beta to version 1.6beta

#- A fault has been discovered in the data capture of Fdepth. Due to

the fact that

the 'ps' command reports PIDs of 4 or 5 digits long, the shell

'cut' commands used to

populate the cpuutilav and ramutilav arrays may contain blank

fields because of

'ps' output misalignments. Fixed that by adjusting the field

switch -f for 'cut'. There

is probably a better way, but this is a quick and dirty hack.

#- Also on the Fdepth calculations, the normalisation of SCPU, SRAM

and SSIMAPPS were

totally missing. Fixed by adding the necessary constants.

CHANGELOG: From version 1.4beta to version 1.5beta

#- In version 1.4 beta, the implementation of the various

Fdepth/Fbreadth metrics is really

bad to mediocre in the best case scenario. Addressed that issue

with various changes.

 186

In particular, the appscores hash has been updated with a more

complete list of command

scores, and FDepth has been moved a bit further down the

computational process for the

purposes of efficiency.

#- On the final stage, where we locate the point where the old and

the freshly acquired

user data coincide, I was shifting the arrays in the bogus array.

This is uneccessary

and is a waste of RAM. I am now placing the result of the shift to

a bogus variable.

CHANGELOG: From version 1.3beta to version 1.4beta

#- Fixed an alignment problem between @usrcommands and

@commandsarguments due to

incorerct order of performing the regexps between the two. The

order should

have been maintained.

#- An additional error has been discovered due to the wat we extract

information from

/var/log/secure. The idea is that the $USRNAMEsessionid file

should contain info

for one use session. However, it doesn't, since information from

previous sessions

is maintained in /var/log/secure. Fixed that by doing some

additional checking.

#- Corrected various error messages to indicate certain abnormal

conditions so that they

are more accurrate or meaningful.

CHANGELOG: From version 1.2beta to version 1.3beta

#- Fixed command line argument processing which was missing on

version 1.2beta

#- Cleaned various uneccessary stdout debug statements.

#Essential Sanity checks...

@whoami=getpwuid($<);

die "Error:You should execute this program ONLY with root privileges.

You are not root.\n"

if ($whoami[2]!=0 && $whoami[3]!=0);

die "Usage: cmdparser [username] . You MUST specify a valid

username.\n"

if (($ARGV[0] eq ""));

#Is a globalmon process running. If not, we are in trouble and we

should not be running

#$globalmonrun=`ps auxwww | grep globalmon.pl | grep -v grep | wc -

l`;

#die "cmdparser for $ARGV[0] : Error: No single globalmon process

running. Exiting. \n"

#if ($globalmonrun ne "1");

#Scoring constants. Here we introduce important constants for

normalising the

#sophistication scoring of the users. This beta version of the script

has these values

#hard-wired by means of constants and hash assignments. The values

can be derived by running

#the script with the 'train' option. This will calculate average non

normalised values, for

 187

#certain categories of users. I have hardwired these values now, but

in later versions, I

#plan to obtain them from RDBMS SQL queries.

#Fbreadth

#Normally it would be 7 for novices, 11 for masters and 14 for

advanced users.

#But we add to all these numbers a weight of +4 to accommodate for

things such as start

#and end shell session commands. In particular, every command

sequence will always have

#the following unique commands, executed automatically by start and

finish session shell

#scripts: /sbin/consoletype, /usr/bin/dircolors --sh /etc/DIR_COLORS,

#/usr/bin/startshellsession, /usr/bin/locale charmap, /bin/uname -m,

/usr/bin/dumpkeys,

are always at the start, and /usr/bin/endshellsession,

/usr/bin/clear at the end.

That makes a total of 8, hence the weight of +8. This is OS (or

even HOST) specific and

this issue should be tackled by the cmdparser script in record

mode!!!

$MAXDIFFAPPSFORNOVICES=15;

$MINDIFFAPPSFORADVANCED=22;

$MAXDIFFAPPSFORMASTERS=19;

#Fdepth

#i)Fappsscore

#Best to use a hash to assign a score to the applications

%appscores=(

 "/usr/bin/startshellsession" => "0.5",

 "/usr/bin/endshellsession" => "0.5",

 "/usr/bin/clear" => "0.5",

 "/bin/cat" => "0.5",

 "cat" => "0.5",

 "/bin/ls" => "0.5",

 "ls" => "0.5",

 "/bin/vi" => "0.5",

 "/bin/cp" => "0.5",

 "/usr/bin/mozilla" => "0.5",

 "/usr/bin/xmms" => "0.5",

 "xmms" => "0.5",

 "/usr/bin/less" => "0.5",

 "/bin/date" => "0.5",

 "/usr/bin/ssh" => "0.5",

 "/bin/mkdir" => "0.5",

 "/bin/ping" => "1",

 "ping" => "1",

 "/usr/bin/gcc" => "3",

 "gcc" => "3",

 "/usr/bin/cc" => "3",

 "/usr/sbin/tcpdump" => "3",

 "tcpdump" => "3",

 "/bin/awk" => "3",

 "/usr/bin/perl" => "1",

 "/usr/bin/diff" => "1",

 "/usr/bin/who" => "0.5",

 "/bin/id" => "0.5",

 "/bin/hostname" => "0.5",

 "/bin/grep" => "1",

 188

 "/bin/fgrep" => "1",

 "/bin/chgrp" => "1",

 "/bin/chmod" => "1",

 "/usr/bin/make" => "1",

 "/bin/tar" => "1",

);

#ii)Fresutil

#Values represent %values as reported by 'ps'

$MAXCPUUTILFORNOVICES=0.7;

$MAXCPUUTILFORORDINARIES=5.5;

$MINIMUMCPUUTILFORADVANCED=15.0;

$MAXMEMUTILFORNOVICES=0.1;

$MAXMEMUTILFORORDINARIES="test";

$USRNAME=$ARGV[0];

#Fish the uid and gid. An essential step for many operations

#to follow:

$usruid=getpwnam($USRNAME);

$usrgid=getgrnam($USRNAME);

die "Error: Username $USRNAME does not exist.\n"

if (!(defined($usruid)));

#debug

#print "Fetched uid for user $USRNAME was $usruid\n";

#START/END SHELL SESSION MARKERS

#Strings used to mark the beginning and the end of

#a user's interactive shell session. They are vital

#in quantifying metrics such as FBreadth etc...

#--PS: This technique is still NOT EFFECTIVE for MULTIPLE SESSIONS

I NEED TO IMPLEMENT A GLOBAL MONITOR via the ps command.

#AND NOW I HAVE -- Dec 2003

$STARTMARK="###BEGSHELLSESSION###";

$ENDMARK="###FINSHELLSESSION###";

system "cat /var/log/secure | grep '$USRNAME, uid:$usruid' | grep -v

-i accepted | grep -v from | grep -v '(null)' >>

/var/log/.analysis$USRNAME";

#Does .analysis$USRNAME display an end session tag?

#debug

print "cmdparser on $USRNAME: About to enter loop.\n";

#Note the use of eval here. This is of particular importance

#when we wish to assign a value in the EXPR of the conditional

statement.

#If we just used the backtics to assign the result to a scalar

variable

#thinking that $scalar would be returned, IT WONT!! IT RETURNS

SUCCESS

#OR FAILURE IN ASSIGNING THE BACKTICK VALUES TO THE VARIABLE AND

WON'T PRODUCE THE

#RIGHT RESULT. ALWAYS USE AN EVAL IN IF/WHILE...conditions!

 189

while ((eval `grep "$ENDMARK" /var/log/.analysis$USRNAME | wc -l`)

ne "1") {

 #Take a snapshot of computational resource utilisation data:

 @cpuutilav=`ps u | grep $USRNAME | grep -v ^USER | cut -d' ' -

f8-9`;

 @ramutilav=`ps u | grep $USRNAME | grep -v ^USER | cut -d' ' -

f10-11`;

 #Taking the simultaneous number of apps is not necessary, as it

can be

 #sensed by the array size of either cpuutilav or ramutilav

outside this

 #computational loop for efficiency.

 #Has anything changed, any new commands?

 system "sleep 2";

 #If .analysisb$USRNAME exists we have hit a race condition and

this is an exception

 die "Exiting, due to race condition with user $USRNAME \n"

 if (-e "/var/log/.analysisb$USRNAME");

 system "cat /var/log/secure | grep '$USRNAME, uid:$usruid' |

grep -v -i accepted | grep -v from | grep -v '(null)' >

/var/log/.analysisb$USRNAME";

 #debug

 print "cmdparser on $USRNAME: Executing /var/log/secure second

round of greps for analysisb.\n";

 system "sleep 2";

 #The same for .analysisc$USRNAME

 die "Exiting, due to race condition with user $USRNAME \n"

 if (-e "/var/log/.analysisc$USRNAME");

 #debug

 print "cmdparser on $USRNAME: Executing third round of greps

for analysisc.\n";

 system "cat /var/log/secure | grep '$USRNAME, uid:$usruid' |

grep -v -i accepted | grep -v from | grep -v '(null)' >

/var/log/.analysisc$USRNAME";

 system "cat /var/log/.analysis$USRNAME

/var/log/.analysisb$USRNAME /var/log/.analysisc$USRNAME | sort | uniq

> /var/log/.analysis$USRNAME";

 system "rm -f /var/log/.analysisb$USRNAME

/var/log/.analysisc$USRNAME";

}

#At this point, the user must have exited the session and we should

be ready to collect

#the session data.

@dateofcommands=`cat /var/log/.analysis$USRNAME | grep -v -i

identification | grep -v ^### | cut -b1-15`;

@usrcommands=`cat /var/log/.analysis$USRNAME | grep -v -i

identification | grep -v ^### | cut -b 16- | cut -d' ' -f7 | grep -v

"$STARTMARK" | grep -v "$ENDMARK"`;

@commandsarguments=`cat /var/log/.analysis$USRNAME | grep -v -i

identification | grep -v ^### | cut -b 16- | cut -d' ' -f8- | grep -v

"$STARTMARK" | grep -v "$ENDMARK"`;

foreach $dataarray (@dateofcommands, @usrcommands,

@commandsarguments) {

 foreach $arrayelement ($dataarray) {

 chomp $arrayelement;

 190

 }

}

$sizeofcommandset=$#usrcommands;

$noofcommands=$sizeofcommandset+1;

@sessfiles=glob "/var/log/$USRNAME*";

if ($#sessfiles != -1) {

 print "Entering loop where old session file was detected. \n";

 @oldsessiondateofcommands=`cat /var/log/$USRNAME* | grep -v

^### | grep -v ^Recorded | cut -d' ' -f1-3`;

 @oldsessionusrcommands=`cat /var/log/$USRNAME* | grep -v ^### |

grep -v ^Recorded | cut -d' ' -f4`;

 @oldsessioncommandsarguments=`cat /var/log/$USRNAME* | grep -v

^### | grep -v ^Recorded | cut -d' ' -f5-`;

 foreach $dataarray (@oldsessiondateofcommands,

@oldsessionusrcommands, @oldsessioncommandsarguments) {

 foreach $arrayelement ($dataarray) {

 chomp $arrayelement;

 }

 }

 #Find at which point the new commands arrays coincide (aka at

which point the last dateofcommand

 #from the old session is located at the dateofcommands from

the freshly acquired data.)

 $sizeofoldsession=$#oldsessiondateofcommands;

 $stringtolocate="$oldsessiondateofcommands[$sizeofoldsession]

$oldsessionusrcommands[$sizeofoldsession]

$oldsessioncommandsarguments[$sizeofoldsession]";

 #And now start comparing from the end of the freshly acquired

data, in order

 #to increase runtime efficiency (the most recent data are

closer to the end of the arrays).

 #Be careful! index is a reserved keyword in PERL. Also take

care in the conditional to have

 #at least expression of the type >= <= in specifying the

limits. Otherwise the loop will

 #hang!

 for ($loopindex=$sizeofcommandset; $loopindex>=0; $loopindex--)

{

 $linestring="$dateofcommands[$loopindex]

$usrcommands[$loopindex] $commandsarguments[$loopindex]";

 if ($linestring eq $stringtolocate) {

 $indexlocation=$loopindex; } else {

$bogus=3;}

 }

 #So everything from 0 to indexlocation is old and should vacate

the premises

 #on the dateofcommands usrcommands and commandsarguments

arrays.

 for ($n=0; $n<=$indexlocation; $n++) {

 $bogus=shift @dateofcommands;

 $bogus=shift @usrcommands;

 191

 $bogus=shift @commandsarguments;

 }

 #Analysis of Fbreadth

 %seen = ();

 foreach $item (@usrcommands) {

 $seen{$item}++;

 }

 @fbreadtharray = keys %seen;

 $noofdiffapps=$#fbreadtharray;

 #debug

 print "No. of different applications: $noofdiffapps \n";

 if ($noofdiffapps <= $MAXDIFFAPPSFORNOVICES) { $fbreadth=1;}

elsif

 ($noofdiffapps > $MAXDIFFAPPSFORNOVICES && $noofdiffapps <

$MINDIFFAPPSFORADVANCED) { $fbreadth=3;} else {$fbreadth=6;}

 #Analysis of FDepth

 #i)Fappstypescore

 $totappscore=0;

 foreach $commands (@usrcommands) {

 $totappscore+=$appscores{$commands};

 }

 $fappstypescore=$totappscore/$noofcommands;

 #ii)Fresourceutil

 #debug

 print "Cpuutilav matrix has the following elements: @cpuutilav

\n";

 print "Ramutilav matrix has the following elements: @ramutilav

\n";

 for ($loopindex=0; $loopindex<=$#cpuutilav; $loopindex++) {

 $SCPU+=$cpuutilav[$loopindex]/$#cpuutilav;

 $SRAM+=$ramutilav[$loopindex]/$#ramutilav;

 }

 #This check is necessary in case we have parsing problems with

the

 #resource utilisation data. Will be removed if the parsing

proves to

 #be stable.

 if ($#cpuutilav == $#ramutilav) { $SIMAPPS=$#cpuutilav;} else

{ $SIMAPPS=0;}

 $fdepth=$fappstypescore+$SCPU+$SRAM+$SIMAPPS;

 $sessfileid=`date +%Y%m%d%H%M%S`;

 #to avoid a gap line, chomp the newline.

 chomp $sessfileid;

 unless (open SESSFILE, "> /var/log/$USRNAME$sessfileid") {

 die "cmdparser Error: Could not create the session file

for user $USRNAME due to: $!";

 }

 print SESSFILE "Recorded: $sessfileid \n";

 $datedata=`grep '###' /var/log/.analysis$USRNAME`;

 print SESSFILE $datedata;

 192

 print SESSFILE "###---NOOFCOMMANDS=$noofcommands\n";

 print SESSFILE "###---FBREADTH=$fbreadth\n";

 print SESSFILE "###---TOTAPPSCORE=$totappscore\n";

 print SESSFILE "###---SCPU=$SCPU\n";

 print SESSFILE "###---SRAM=$SRAM\n";

 print SESSFILE "###---SIMAPPS=$SIMAPPS\n";

 for ($loopindex=0; $loopindex <= $#usrcommands; $loopindex++) {

 print SESSFILE "$dateofcommands[$loopindex]

$usrcommands[$loopindex] $commandsarguments[$loopindex]\n";

 }

 close SESSFILE;

 system "rm -f /var/log/.analysis$USRNAME";

 #debug

 print "Cmdparser exiting for user $USRNAME \n";

 } else {

 $sessfileid=`date +%Y%m%d%H%M%S`;

 #to avoid a gap line, chomp the newline.

 chomp $sessfileid;

 #Analysis of Fbreadth

 %seen = ();

 foreach $item (@usrcommands) {

 $seen{$item}++;

 }

 @fbreadtharray = keys %seen;

 $noofdiffapps=$#fbreadtharray;

 if ($noofdiffapps <= $MAXDIFFAPPSFORNOVICES) {

$fbreadth=1;} elsif

 ($noofdiffapps > $MAXDIFFAPPSFORNOVICES && $noofdiffapps

< $MINDIFFAPPSFORADVANCED) { $fbreadth=3;} else {$fbreadth=6;}

 #Analysis of FDepth

 #i)Fappstypescore

 $totappscore=0;

 foreach $commands (@usrcommands) {

 $totappscore+=$appscores{$commands};

 }

 $fappstypescore=$totappscore/$noofcommands;

 #ii)Fresourceutil

 #debug

 print "Cpuutilav matrix has the following elements:

@cpuutilav \n";

 print "Ramutilav matrix has the following elements:

@ramutilav \n";

 for ($loopindex=0; $loopindex<=$#cpuutilav; $loopindex++)

{

 $SCPU+=$cpuutilav[$loopindex]/$#cpuutilav;

 $SRAM+=$ramutilav[$loopindex]/$#ramutilav;

 }

 #This check is necessary in case we have parsing problems

with the

 #resource utilisation data. Will be removed if the

parsing proves to

 #be stable.

 193

 if ($#cpuutilav == $#ramutilav) {

$SIMAPPS=$#cpuutilav;} else { $SIMAPPS=0;}

 $fdepth=$fappstypescore+$SCPU+$SRAM+$SIMAPPS;

 unless (open SESSFILE, "> /var/log/$USRNAME$sessfileid")

{

 die "cmdparser Error: Could not create the session

file for user $USRNAME due to: $!";

 }

 print SESSFILE "Recorded: $sessfileid \n";

 $datedata=`grep '###' /var/log/.analysis$USRNAME`;

 print SESSFILE $datedata;

 print SESSFILE "###---FBREADTH=$fbreadth\n";

 print SESSFILE "###---FDEPTH=$fdepth\n";

 for ($index=0; $index <= $#usrcommands; $index++) {

 print SESSFILE "$dateofcommands[$index]

$usrcommands[$index] $commandsarguments[$index]\n";

 }

 close SESSFILE;

 system "rm -f /var/log/.analysis$USRNAME";

 #debug

 print "Cmdparser exiting for user $USRNAME \n";

 }

E3)Realtime monitoring script

#!/usr/bin/perl

realtimemon - (C) 2003 George B. Magklaras

version 1.72beta- Removed all debug statements from 1.71 and

inserted memory debug

measurement statements.

Version 1.71beta- Included a check on the inner loop, in order to

test for the

size of the asignature array (if it is 0, then we

should not

enter at all the inner loop.

Also included the match score print statements in two

places.

Once, where the algorithm terminates in the worst

case scenario

with no matches, and once where the algorithm ends

where matches

are found. (two possible exit points for the

algorithm).

Version 1.7beta - Removed most of the debug statements in order to

analyse

the performance of the algorithm.

Version 1.6beta - Enforced a 'use strict' interface totidy up a bit

the mess

Finish off the sequence comparison algorithm.

 194

Version 1.5beta - Modified the command termination sequence

see comments on the createsequence1point5beta version tool.

#use Env;

use strict;

#START/END SHELL SESSION MARKERS

#Strings used to mark the beginning and the end of

#a user's interactive shell session.

my $STARTMARK="###BEGSHELLSESSION###";

my $ENDMARK="###FINSHELLSESSION###";

#The value the encoder will use for a command that has not

#being registered.

my $UNKNOWNCMD="-1";

chomp(my $localhostname=`/bin/hostname`);

chomp(my $localtargetos=`/bin/uname -rsm`);

my $localsignaturedir="/var/log/signatures$localhostname";

die "createsequence Error: The directory $localsignaturedir does not

exist. Register the host first.\n"

if (!(-e "$localsignaturedir"));

#Essential Sanity checks...

my @whoami=getpwuid($<);

die "realtimemon Error:You should execute this program ONLY with root

privileges. You are not root.\n"

if ($whoami[2]!=0 && $whoami[3]!=0);

die "Usage: realtimemon [username] . You MUST specify a valid

username.\n"

if (($ARGV[0] eq ""));

my $ONLINEUSER=$ARGV[0];

my $onlineusruid=getpwnam($ONLINEUSER);

my $onlineusrgid=getgrnam($ONLINEUSER);

die "Error: Username $ONLINEUSER does not exist.\n"

if (!(defined($onlineusruid)));

my $hostname=$localhostname;

#Has this host ran successfully the commandregister script.

die "realtimemon Error: Could not find the command enumeration codes.

Have you run the commandregister script?\n"

if (!(-e "/var/log/regcommandson$hostname"));

#Read the command codes from the file into a hash.

unless (open REGCOMMHR, "</var/log/regcommandson$hostname") {

 die "realtimemon Error: Cannot read the registered

commands file for host $hostname due to: $!";

 }

Note that because the registered commands file has white space as a

field

delimiter, we will need to 'split' the stream from the REGCOMMHR

file hande with the same single whitespace character.

my %readcommhash=split(" ", <REGCOMMHR>);

close REGCOMMHR;

 195

#At this point, we have the command codes, and we are ready to start

the processing.

#Do we have a .analysis$ONLINEUSER file?

#If yes, encode the user commands. If not,

#exit with an error message.

if (-e "/var/log/.analysis$ONLINEUSER") {

 my @onlinecmds=`cat /var/log/.analysis$ONLINEUSER | grep -v -i

identification | grep -v ^### | cut -b 16- | cut -d' ' -f7 | grep -v

"$STARTMARK" | grep -v "$ENDMARK"`;

 my @onlinecmdargs=`cat /var/log/.analysis$ONLINEUSER | grep -v

-i identification | grep -v ^### | cut -b 16- | cut -d' ' -f8- | grep

-v "$STARTMARK" | grep -v "$ENDMARK"`;

 #Encode the commands

 my $onlinecmd;

 my $cmdtopush;

 my @encodedcmds;

 foreach $onlinecmd (@onlinecmds) {

 chomp $onlinecmd;

 #Does it exist in the hash?

 if (exists $readcommhash{$onlinecmd}) {

 $cmdtopush=$readcommhash{$onlinecmd};

 push(@encodedcmds, $cmdtopush);} else {

 push(@encodedcmds, $UNKNOWNCMD);

 }

 }

 my $onlinecmdarg;

 my @encodedcmdargs;

 foreach $onlinecmdarg (@onlinecmdargs) {

 if (($onlinecmdarg eq " ") ||

(!(defined($onlinecmdarg)))) {

 push(@encodedcmdargs, "noarg"); } else {

 chomp $onlinecmdarg;

 push(@encodedcmdargs, $onlinecmdarg);

 }

 }

 #Do we have as many arguments as encoded commands?

 die "realtimemon Fatal Error: Sorry, the encoding process has

failed for user $ONLINEUSER \n"

 if(! ($#encodedcmds==$#encodedcmdargs));

 #Then just output the sequence in stdout.

 my $loopcount;

 my $stringtopush;

 my @sequence;

 for ($loopcount=0; $loopcount <= $#encodedcmds; $loopcount++) {

 #Note that here, we do not need to employ the sequence

termination string

 #-##8# , because this is only necessary when we parse the

stored misuse

 #signatures. Here, we acquire the data straight from the

snoopy log file

 #and hence we use only the

CcommandcodeAargument1argument2.. format

 $stringtopush="C$encodedcmds[$loopcount]A$encodedcmdargs[$loopc

ount]";

 push(@sequence, $stringtopush);

 196

 }

 my $maxsequenceindex=$#sequence - 1;

 #Debug

 #print "The sequence is array is: @sequence ";

 my $seqsize=$#sequence;

 #print "with size $seqsize \n";

 #Now, read the misuse signatures in the local signature

directory:

 opendir MISDIRH, $localsignaturedir or die "realtimemon Error:

Could not open the misuse signature dir: $! \n";

 my $nameoffile;

 my @listofsignfiles;

 while ($nameoffile=readdir MISDIRH) {

 #Skip over the . and .. files (standard in each dir)

 next if $nameoffile=~/^\./;

 #insert the absolute path of the misuse signature files

so that

 #the next loop will access the files directly.

 $nameoffile="$localsignaturedir/$nameoffile";

 push(@listofsignfiles, $nameoffile);

 }

 close MISDIRH;

 #And now, lets start the real work. Take the extracted sequence

and

 #compare it against all the misuse signatures for the host one

by one

 my $noofmatches=0;

 my $misusesignature;

 my $misusesequence;

 my $loopcountj;

 my $noofsigcmds;

 my @asignature;

 my $matchscore;

 my $totcomparisons;

 my $innerloopcmps;

 my $outerloopcmps;

 my $maxasignatureindex;

 #Debug for memcons

 my $memcons;

 #Debug for memcons

 $memcons=`ps auxwww | grep realtimemon.pl | grep -v grep`;

 print "Before the outerloop: $memcons \n";

 foreach $misusesignature (@listofsignfiles) {

 chomp($misusesequence=`cat $misusesignature | grep -v

^###`);

 #convert the misuse signature string to an array.

 @asignature=split /-##8#/, $misusesequence;

 $noofsigcmds=$#asignature;

 $maxasignatureindex=$noofsigcmds - 1;

 #Debug

 #print "Comparing against the $misusesignature signature

that has $noofsigcmds commands...\n";

 197

 for ($loopcount=0; $loopcount <= $#sequence;

$loopcount++) {

 $outerloopcmps++;

 #debug:

 #print "Current loopcount for theuser sequence loop

is $loopcount . \n";

 if ($#asignature!=0) {

 for ($loopcountj=0; $loopcountj <= eval

{$#asignature-1}; $loopcountj++) {

 #Debug memcons

 $memcons=`ps auxwww | grep realtimemon.pl | grep -v

grep`;

 print "In the innerloop: $memcons \n";

 #Debug

 #print "$sequence[$loopcount] versus

$asignature[$loopcountj] \n";

 $innerloopcmps++;

 if ($sequence[$loopcount] eq

$asignature[$loopcountj]) {

 $noofmatches++;

 shift

@asignature;

 #last;

 }

 }

 } else {

 #Debug

 #Here we print the total statistics in the case of the

algorithm

 #terminating NOT in the worst case scenario

 $matchscore=(100*($noofmatches/$noofsigcmds));

 print "Match score for $misusesignature is

(($noofmatches/$noofsigcmds)*100)=$matchscore \n";

 $totcomparisons=$innerloopcmps*$outerloopcmps;

 print "Innerloopcmps=$innerloopcmps ,

Outerloopcmps=$outerloopcmps, totalcomparisons=$totcomparisons \n";

 }

}

 #Here, we print the total statistics in the case of the

algorithm

 #terminating without finding a match (worst case

scenario).

 $matchscore=(100*($noofmatches/$noofsigcmds));

 print "Match score for $misusesignature is

(($noofmatches/$noofsigcmds)*100)=$matchscore \n";

 $totcomparisons=$innerloopcmps*$outerloopcmps;

 print "Innerloopcmps=$innerloopcmps ,

Outerloopcmps=$outerloopcmps, totalcomparisons=$totcomparisons \n";

}

} else {

 print "realtimemon Fatal Error: Sorry, the /var/log/.analysis

file for user $ONLINEUSER cannot be found.\n";

 return -1;

}

 198

E4) ‘createsequence’ script

#!/usr/bin/perl -w

createsequence version 1.5beta (C) 2004 George B. Magklaras

A correction to the sequence encoding format was made in this

version

in order to provide a better command separation sequence.

Instead of the character S (CcommandcodeAcommandargsS) we now

terminate

every encoded command with the string -##8# . So the encoding

scheme now becomes

CcommandcodeAcommandargs-##8# . The realtimemon script required

the same change.

createsequence version 1.4beta (C) 2004 George B. Magklaras

Modified the program so that whitespace is removed before

the arguments are encoded. This is necessary to improve the

alignment algorithm, as the spaces might disorient the alignment

algorithm.

use strict;

use DBI;

#The value the encoder will use for a command that has not

#being registered.

my $UNKNOWNCMD="-1";

#The string returned by whitch, if the command fails to find

#the path of a command.

my $NOWHICHPATH="watch: no";

Essential Sanity checks...

my @whoami=getpwuid($<);

die "creatsequence Error:You should execute this program ONLY with

root privileges. You are not root.\n"

if ($whoami[2]!=0 && $whoami[3]!=0);

#Do some essential data gathering on the local host.

chomp(my $localhostname=`/bin/hostname`);

chomp(my $localtargetos=`/bin/uname -rsm`);

my $localsignaturedir="/var/log/signatures$localhostname";

die "createsequence Error: The directory $localsignaturedir does not

exist. Register the host first.\n"

if (!(-e $localsignaturedir));

#Has this host ran successfully the commandregister script.

die "realtimemon Error: Could not find the command enumeration codes.

Have you run the commandregister script?\n"

if (!(-e "/var/log/regcommandson$localhostname"));

print "###\n";

print "# createsequence itpmdb tool Version 1.5 beta #\n";

print "###\n";

print "# (C) 2003 George B. Magklaras #\n";

print "###\n";

print "#Enter the sequence consequence type: (max 20 chars) \n";

my $consequence=<STDIN>;

chomp $consequence;

die "createsequence Error: Sorry, that string is too long. Try again

with a shorter one. \n"

 199

if (length($consequence)> 20);

print "#Enter the first misuse keyword (max 20 chars):\n";

my $firstmisuseword=<STDIN>;

chomp $firstmisuseword;

die "createsequence Error: Sorry, that string is too long. Try again

with a shorter one. \n"

if (length($firstmisuseword)> 20);

print "#Enter a second misuse keyword (max 20 chars):\n";

my $secmisusekeyword=<STDIN>;

chomp $secmisusekeyword;

die "createsequence Error: Sorry, that string is too long. Try again

with a shorter one. \n"

if (length($secmisusekeyword)> 20);

print "#Enter a third misuse keyword (max 20 chars):\n";

my $thirdmisusekeyword=<STDIN>;

chomp $thirdmisusekeyword;

die "createsequence Error: Sorry, that string is too long. Try again

with a shorter one. \n"

if (length($thirdmisusekeyword)> 20);

print "#Now enter the commands at the cmd prompt \n";

print "#and the respective arguments at the arg prompt.\n";

print "#Type the string END at the cmd prompt, to exit the \n";

print "#command input loop. \n";

my $loopcount=1;

my @inputcmds;

my @inputargs;

my $stcmd;

my $starg;

while ($stcmd ne "END") {

 print "%Enter cmd$loopcount:\n";

 $stcmd=<STDIN>;

 chomp $stcmd;

 # Now we need to find the full path of the command.

 # This is because "Snoopy" reports the full path in the logs.

 my $tempstcmd=`which $stcmd 2> /dev/null`;

 # Depending on whether which will locate the full path, the

program acts

 # accordingly, based on what 'which' normally returns if it

fails to locate.

 # the command. Here, I redirect STDERR to /dev/null so, if

which fails it

 # will return an empty string.

 if (!($tempstcmd eq "")) {

 $stcmd=$tempstcmd;

 chomp $stcmd;

 }

 print "%Enter args$loopcount:\n";

 $starg=<STDIN>;

 chomp $starg;

 # It is necessary to collapse any white space in the arguments.

 $starg =~ s/\s+//g;

 push(@inputcmds, $stcmd);

 push(@inputargs, $starg);

 $loopcount=$loopcount+1;

}

 200

#Do we have as many arguments as encoded commands?

die "createsequence Fatal Error: Sorry, the misuse signature creation

has failed during command input stage.\n"

if(! ($#inputcmds==$#inputargs));

die "createsequence Error: Sorry, but you entered no commands for the

misuse signature. Try again.\n"

if($#inputcmds==0);

print "#OK, got $#inputcmds commands with their respective

arguments.\n";

#OK, and we are now ready to encode the sequence.

print "#Encoding the sequence ...\n";

#Read the command codes from the file into a hash.

unless (open REGCOMMHR1, "</var/log/regcommandson$localhostname") {

 die "realtimemon Error: Cannot read the registered commands

file for host $localhostname due to: $!";

 }

my %readcommhash=split(" ", <REGCOMMHR1>);

close REGCOMMHR1;

my @encodedcmds;

my @encodedargs;

my $onlinecmd;

my $onlinearg;

my $cmdtopush;

foreach $onlinecmd (@inputcmds) {

 if (exists $readcommhash{$onlinecmd}) {

 $cmdtopush=$readcommhash{$onlinecmd};

 push(@encodedcmds, $cmdtopush);} else {

 push(@encodedcmds, $UNKNOWNCMD);

 }

 }

foreach $onlinearg (@inputargs) {

 if (($onlinearg eq " ") || (!(defined($onlinearg)))) {

 push(@encodedargs, "noarg"); } else {

 push(@encodedargs, $onlinearg);

 }

 }

#Do we have as many encoded arguments as encoded commands?

die "createsequence Fatal Error: Sorry, the misuse signature creation

has failed during the encoding stage \n"

if(! ($#encodedcmds==$#encodedargs));

#Construct the misuse signature string

my $stringtopush;

my @finalsequence;

for ($loopcount=0; $loopcount <= $#encodedcmds; $loopcount++) {

 $stringtopush="C$encodedcmds[$loopcount]A$encodedargs[$loopcoun

t]-##8#";

 push(@finalsequence, $stringtopush);

 201

}

#It is now time to connect to the database and get an ID that will

form the name

#of the file.

die "registerhost Error:No MySQL client cnf file found.\n"

if (! (-e "/root/.my.cnf"));

my

$datasource="DBI:mysql:itpmdb;mysql_read_default_file=/root/.my.cnf";

my $itpmservh=DBI->connect ($datasource, undef, undef, {RaiseError =>

1, PrintError => 1});

chomp(my $creationyear=`date +%Y`);

chomp(my $creationmonth=`date +%m`);

chomp(my $creationday=`date +%d`);

#The nanosecond time indicator is created here not for insertion on

to the ITPMdb.

#Its purpose is to provide a way of creating a unique filename

locally (a second

#resolution might not be enough.

chomp(my $creationnanosec=`date +%N`);

my

$localsignfile="sig$creationyear$creationmonth$creationday$creationna

nosec";

#Build a string and pass it to the OPEN statement because the dots

and / symbols

might not be interpolated properly and cause problems.

my $signfiletoopen="$localsignaturedir/$localsignfile";

#Now it is wise to try and create the file locally first and then

update the database.

#In that way the database will not contain incorrect information.

unless (open SIGFILEH, ">$signfiletoopen") {

 die "createsequence Error: Could not open the local signature

file in $localsignaturedir due to: $! \n";

}

print SIGFILEH "###:$creationyear \n";

print SIGFILEH "###:$creationmonth \n";

print SIGFILEH "###:$creationday \n";

print SIGFILEH "###:$localtargetos \n";

print SIGFILEH "###:$localtargetos \n";

print SIGFILEH "###:$consequence \n";

print SIGFILEH "###:$firstmisuseword \n";

print SIGFILEH "###:$secmisusekeyword \n";

print SIGFILEH "###:$thirdmisusekeyword \n";

print SIGFILEH @finalsequence;

close SIGFILEH;

my $rows=$itpmservh->do("INSERT INTO signatures

(targetos,hostfqdn,consequencetype,misusekeyword1,misusekeyword2,misu

sekeyword3,creationday,creationmonth,creationyear,sigdir,signfile)"

 . "VALUES

('$localtargetos','$localhostname','$consequence','$firstmisuseword',

 202

'$secmisusekeyword','$thirdmisusekeyword','$creationday','$creationmo

nth','creationyear','$localsignaturedir','$localsignfile')");

print "#######################################\n";

print "createsequence STATUS: \n";

print "Created sequence on $localhostname with file name

$localsignfile of consequence: $consequence \n";

print "bound to the keywords: $firstmisuseword, $secmisusekeyword,

$thirdmisusekeyword .\n";

E5) Snoopy execve logger source code (C programming language)

/* snoopy.c -- execve() logging wrapper

 * Copyright (c) 2000 marius@linux.com,mbm@linux.com

 * Version 1.1

 * $Id: snoopy.c,v 1.5 2000/09/27 05:16:40 mbm Exp $

 *

 * Part hacked on flight KL 0617, 30,000 ft or so over the Atlantic

:)

 *

 * This program is free software; you can redistribute it and/or

modify

 * it under the terms of the GNU General Public License as published

by

 * the Free Software Foundation; either version 2, or (at your

option)

 * any later version.

 *

 * This program is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 * GNU General Public License for more details.

 *

 * You should have received a copy of the GNU General Public License

 * along with this program; if not, write to the Free Software

Foundation,

 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

 */

/* Minor modifications by George B. Magklaras 02/2002 */

/* Mainly to modify the destination of the output file */

#include <dlfcn.h>

#include <stdio.h>

#include <syslog.h>

#include "snoopy.h"

#if defined(RTLD_NEXT)

define REAL_LIBC RTLD_NEXT

#else

define REAL_LIBC ((void *) -1L)

#endif

#define FN(ptr,type,name,args) ptr = (type (*)args)dlsym (REAL_LIBC,

name)

inline void log(const char *filename, char **argv) {

 static char **ptr, *logstring;

 static int size = MAX;

 203

 static int (*guid)(void);

 FN(guid,int,"getuid",(void));

 ptr = (char **)&argv[1];

 logstring = (char *)malloc((size_t *)size+2);

 /* Here, we change the default openlog funnction call

 from what is shown below, to redirect the cause

 syslogd to redirect the output to a specific file.

 The logging codes are in </sys/syslog.h>.

 openlog("snoopy", LOG_PID, LOG_AUTHPRIV); */

 openlog("ITPMhostlogger", LOG_PID, LOG_LOCAL3);

 size -= snprintf(logstring, size,"[%s, uid:%d sid:%d]: %s",

 getlogin(), (*guid)(), getsid(0), filename);

 while (*ptr && size > 0)

 size -= snprintf((logstring+MAX-size), size,"

%s",&(**ptr++));

 syslog(LOG_INFO, "%s", logstring);

 free(logstring);

 closelog();

}

int execve(const char *filename, char **argv, char **envp) {

 static int (*func)(const char *, char **, char **);

 FN(func,int,"execve",(const char *, char **, char **));

#if ROOT_ONLY

if ((*guid)() != 0) return (*func) (filename, argv, envp);

#endif

 log(filename, argv);

 return (*func) (filename, argv, envp);

}

int execv(const char *filename, char **argv) {

 static int (*func)(const char *, char **);

 FN(func,int,"execv",(const char *, char **));

#if ROOT_ONLY

if ((*guid)() != 0) return (*func) (filename, argv);

#endif

 log(filename, argv);

 return (*func) (filename, argv);

}

 204

E6)Database Creation SQL statements

CREATE TABLE users

(

 UserID MIDDLEINT UNSIGNED NOT NULL AUTO_INCREMENT,

 PRIMARY KEY (UserID),

 loginname VARCHAR(20) NOT NULL,

 unixuid MIDDLEINT UNSIGNED,

 unixgid MIDDLEINT UNSIGNED,

 adsid VARCHAR(50),

 firstname VARCHAR(20),

 middlename VARCHAR(20),

 lastname VARCHAR(35),

 ADdomain VARCHAR(20),

 homeonhost VARCHAR(45) NOT NULL,

 Crole TINYINT UNSIGNED,

 Csysadm TINYINT UNSIGNED,

 Ccriticalfiles TINYINT UNSIGNED,

 Cphysicalaccess TINYINT UNSIGNED,

 Fattributes TINYINT UNSIGNED,

 allfortargetos CHAR(1),

 usercategoryflag VARCHAR(20),

);

CREATE TABLE hosts

(

 HostID MIDDLEINT UNSIGNED NOT NULL AUTO_INCREMENT,

 PRIMARY KEY (HostID),

 hostip VARCHAR(50) NOT NULL,

 targetos VARCHAR(200) NOT NULL,

 signaturedir VARCHAR(200) NOT NULL,

 noofusers MIDDLEINT UNSIGNED NOT NULL,

 usrmd5sum VARCHAR(35) NOT NULL,

);

CREATE TABLE signatures

(

 SignID MIDDLEINT UNSIGNED NOT NULL AUTO_INCREMENT,

 PRIMARY KEY (SignID),

 targetos VARCHAR(200) NOT NULL,

 hostip VARCHAR(50) NOT NULL,

 Crole TINYINT UNSIGNED NOT NULL,

 creationday TINYINT UNSIGNED NOT NULL,

 creationmonth TINYINT UNSIGNED NOT NULL,

 creationyear TINYINT UNSIGNED NOT NULL,

 signfile VARCHAR(200) NOT NULL,

 reason VARCHAR(30) NOT NULL,

 keyword1 VARCHAR(45) NOT NULL,

 keyword2 VARCHAR(45) NOT NULL,

 keyword3 VARCHAR(45) NOT NULL,

);

CREATE TABLE events

(

 EventID MIDDLEINT UNSIGNED NOT NULL AUTO_INCREMENT,

 PRIMARY KEY (EventID),

 userid MIDDLEINT UNSIGNED NOT NULL,

 signid MIDDLEINT UNSIGNED NOT NULL,

 Fbreadth TINYINT UNSIGNED,

 205

 Fappscore TINYINT UNSIGNED,

 SCPU TINYINT UNSIGNED,

 SRAM TINYINT UNSIGNED,

 SSIMAPPS TINYINT UNSIGNED,

 Fresutil TINYINT UNSIGNED,

 Fsophistication TINYINT UNSIGNED,

 Fexecops TINYINT UNSIGNED,

 Fnetops TINYINT UNSIGNED,

 Fbehavior TINYINT UNSIGNED,

 EPT TINYINT UNSIGNED,

);

E7)’hostregister’ script

#!/usr/bin/perl -w

use strict;

use DBI;

#Essential Sanity checks...

my @whoami=getpwuid($<);

die "cmdregister Error:You should execute this program ONLY with root

privileges. You are not root.\n"

if ($whoami[2]!=0 && $whoami[3]!=0);

#Check that we can connect to the RDBMS server.

#We assume that the MySQL password has been configured in

#a way that allows not to use the -p option. In that way,

#we do not list the password in ths file, so that it is

#vulnerable and induce compile time dependencies. The

#standard way of achieving this is by having the usual

#/username/.my.cnf file containing the RDBMS server FQDN

#the username and the password.

die "registerhost Error:No MySQL client cnf file found.\n"

if (! (-e "/root/.my.cnf"));

#We hardwire the connection to the pre-release database here:

my

$datasource="DBI:mysql:itpmprelease1;mysql_read_default_file=/root/.m

y.cnf";

my $itpmservh=DBI->connect ($datasource, undef, undef, {RaiseError =>

1, PrintError => 1});

#Do some essential data gathering on the local host.

#Note, what used to be localhostname var in version1beta

#has now switched to localip.

chomp(my $localhostname=`/bin/hostname`);

chomp(my $localtargetos=`/bin/uname -rsm`);

my $localsignaturedir="/var/log/signatures$localhostname";

print "Enter the IP address of the host: ";

chomp (my $localip=<STDIN>);

#debug

 206

print "Checking registration details for host: $localhostname with IP

$localip \n";

#Does the signature directory exist?

if (!(-e $localsignaturedir)) {

 print "The directory $localsignaturedir does not exist.\n";

 print "Creating $localsignaturedir directory for you now. \n";

 chdir '/var/log/';

 mkdir "signatures$localhostname",0744;

 chdir "signatures$localhostname";

}

my @loginnames=`/bin/cat /etc/passwd | grep -v nologin | grep -v

"/bin/false"| grep -v ^halt | grep -v ^shutdown | grep -v ^nobody |

grep -v ^"sshd" | grep -v ^"uucp" | grep -v ^"bin" | grep -v ^"news"

| grep -v ^"sync" | grep -v ^"mail" | grep -v ^"root" | grep -v ^"lp"

| cut -d":" -f 1`;

#Caution here. If someone just adds an entry when we finish parsing

the loginnames and then do

#the md5sum, we might have a potential race hazard. Locking the

/etc/passwd file during this

#operation is a solution, but I won't just do that yet.

chomp(my $localusrmd5sum=`/usr/bin/md5sum /etc/passwd | cut -d" " -

f1`);

my $localnoofusers=$#loginnames;

#Debug:

print "Got $localnoofusers users with an md5sum of $localusrmd5sum

\n";

#my @unixuids=`cat /etc/passwd | grep -v nologin | grep -v

"/bin/false"| grep -v ^halt | grep -v ^shutdown | grep -v ^nobody |

grep -v ^"sshd" | grep -v ^"uucp" | grep -v ^"bin" | grep -v ^"news"

| grep -v ^"sync" | grep -v ^"mail" | grep -v ^"root" | grep -v ^"lp"

| cut -d":" -f 3`;

#my @unixgids=`cat /etc/passwd | grep -v nologin | grep -v

"/bin/false"| grep -v ^halt | grep -v ^shutdown | grep -v ^nobody |

grep -v ^"sshd" | grep -v ^"uucp" | grep -v ^"bin" | grep -v ^"news"

| grep -v ^"sync" | grep -v ^"mail" | grep -v ^"root" | grep -v ^"lp"

| cut -d":" -f 4`;

#Does a host entry exist in the itpmdb? If yes, the host is already

registered.

#but we might like to check the users (users might be added or

removed).

#If not, we register and record all the users by doing the following:

my $SQLh=$itpmservh->prepare("SELECT hostip FROM hosts WHERE

hostip='$localip'");

$SQLh->execute();

#Look up the list of hosts.

#A fetchrow loop is NOT necessary, since there should only be one

host entry in the database.

my @itpmhosts=$SQLh->fetchrow_array();

#If the database finds an entry, it will be the first element of the

array.

 207

#If it does not find an entry, DBI returns empty strings so, we check

with

#undefs. In any other case, we bailout.

if ($itpmhosts[0] eq $localip) {

 $SQLh->finish(); alreadypresent();} elsif

(!defined($itpmhosts[0])) {

 doregister();} else { $SQLh->finish(); bailout(); }

 #print join ("\t", @itpmhosts), "\n";

#$itpmservh->disconnect();

#Subroutine definitions start here.

sub doregister {

 print "registerhost doregister: Host $localhostname with IP

$localip is not registered with the ITPM database. \n";

 print "registerhost doregister: Attempting to register

$localhostname . \n";

 #Get the host in the hosts table.

 my $rows=$itpmservh->do ("INSERT INTO hosts

(hostip,targetos,signaturedir,noofusers,usrmd5sum)"

 . " VALUES

('$localip','$localtargetos','$localsignaturedir',"

 . "'$localnoofusers','$localusrmd5sum')"

);

 if (($rows==-1) || (!defined($rows))) {

 print "registerhost Fatal Error: doregister: No records

were altered in the hosts table. Host $localhostname was not

registered.\n";

 } else { print "registerhost doregister: The $localhostname

host with IP $localip was successfully registered in the database

hosts table. ! \n";}

 #And now register the users of the host.

 #Before we do that, the Application Logic dictates that we

 #need to investigate whether there are stale user entries on

 #the host table (if the host did not exist before, then it

would

 #impossible to have user entries on the users table). These

entries

 #will be removed from the users table.(the script was written

before INNODB

 #so this was the only way to enforce Referential Integrity,

since MySQL did

 #bot support foreign keys).

 $rows=$itpmservh->do("DELETE FROM users WHERE

homeonhost='$localhostname'");

 #Now we are ready to start populating the users table.

 #Bogus values for uids and gids as they are given below.

 #We do this in order to trace bugs. Will have a unified loop

later.

 foreach my $usrforreg (@loginnames) {

 chomp $usrforreg;

 my $unixusid=getpwnam($usrforreg);

 my $unixgrid=getgrnam($usrforreg);

 208

 $rows=$itpmservh->do("INSERT INTO users

(loginname,unixuid,unixgid,homeonhost)"

 . "VALUES

('$usrforreg','$unixusid','$unixgrid','$localhostname')");

 }

 }

sub alreadypresent {

 #If already present, do we actually need to re-register the

users?

 print "registerhost alreadypresent: Host $localhostname with ip

$localip is already in the database. \n";

 print "registerhost alreadypresent: Checking if we need an

update on the users. \n";

 $SQLh=$itpmservh->prepare("SELECT usrmd5sum FROM hosts WHERE

hostip='$localip'");

 $SQLh->execute();

 my @fetchedchecksum=$SQLh->fetchrow_array();

 if ($fetchedchecksum[0] eq $localusrmd5sum) {

 print "registerhost alreadypresent: The host appears to

have the same users. No need for users update. \n";

 print "registerhost alreadypresent: So, host

$localhostname with IP $localip is already registered and requires no

updates. \n";

 $SQLh->finish();

 } elsif (!(defined($fetchedchecksum[0]))) {

 print "registerhost Fatal Error: alreadypresent:

usrmd5sum could not be retrieved. This is really bad!\n";

 } else {

 #If we need to re-register the users, then the simplest

thing is to re-register the

 #host. So, what we do is delete the hostname from the

hosts table and then call

 #again the doregister() subroutine. In this way, we re-

use the code and also accommodate

 #for the case that the host has been re-installed the OS

from scratch and/or stale entries.

 print "registerhost alreadypresent: We need to re-

register the users. \n";

 print "registerhost alreadypresent: Attempting to remove

the host with IP $localip. \n";

 my $rowsaffected=$itpmservh->do("DELETE FROM hosts WHERE

hostip='$localip'");

 print "registerhost alreadypresent: Calling doregister to

re-register the host from scratch. \n";

 doregister();

 }

}

sub bailout {

 print "registerhost Fatal Error: The database hosts table

returned an unexpected value! \n";

 print "registerhost Fatal Error: Value was : $itpmhosts[0] \n";

 $SQLh->finish();

 $itpmservh->disconnect();

}

 209

References

[1] National Computing Centre (1998), “BISS ‟98. Information Security: The True Cost to

Business. Research Report”, The National Computing Centre Limited, UK.

[2] Bace R. (2000), “Intrusion Detection”, First Edition, Macmillan Technical Publishing,

Indianapolis, USA, pages:29-30.

[3] Phoenix S. (1997), „Cryptography, trusted third parties and escrow‟, BT Technology Journal,

BT Laboratories, Suffolk, England, Volume 15, Number 2, April 1997

[4] Skevington P., Hart T., „Trusted Parties in Electronic Commerce‟, BT Technology Journal,

BT Laboratories, Suffolk, England, Volume 15, Number 2, April 1997

[5] Ko C., Frinkle T., Goan T., Heberlein T., Levitt K., Mukherjee B., Wee C (1993), ‟Analysis of

an Algorithm for Distributed Recognition and Accountability‟, Proceedings of the First ACM

Conference on Computer and Communication Security, Fairfax, VA, pages:154-164.

[6] Swicky E., Cooper S., Chapman B. (2000), „Building Internet Firewalls‟, Second Edition, O‟

Reilly and Associates, Sebastopol, CA, ISBN: 1-56592-971-1: Chapter 4, page 99 describes

the „land‟-based attack amongst others.

[7] Garfinkel S, Spafford G. (1996), „Practical UNIX and Internet Security‟, Second Edition,

O‟Reilly and Associates, Sebastopol, CA, ISBN: 1-56592-148-1

[8] Denning D.(1986), „An Intrusion Detection Model‟, Proceedings of the Seventh IEEE

Symposium on Security and Privacy, May 1986: pages 119-131.

[9] Anderson, James P., „Computer Security Technology Planning Study 2. ESD-TR-73-51,

Bedford, MA: Electronic Systems Division, Air Force Systems Command, Hanscom Field,

October 1972.

[10] National Computer Security Center, “A Guide to Understanding Audit in Trusted Systems”,

NCSC-TG-001, July 28, 1987.

[11] National Computer Security Center, “Department of Defense Trusted Computer System

Evaluation Criteria.” Orange book, DOD 5200.28-std, December 1985.

[12] Halme L., Lunt T., and Van Horne J, “Automated Analysis of Computer System Audit trails

for Security Purposes.”, Proceedings of the National Computer Security Conference,

Washington, D.C., September 1986.

 210

[13] Lunt, T et al., “IDES: A progress report”, Proceedings of the Sixth Annual Computer Security

Applications Conference, Tucson, AZ, December 1990.

[14] Amoroso, E., “Intrusion Detection: An introduction to Internet surveillance, correlation, traps,

trace-back, and response”, Second Edition, Intrusion.Net books, NJ, ISBN:0-9666700-7-8,

June 1999. Pages100-102 define the term „intrusion‟ whereas page 16 contains the definition

of „Intrusion Detection‟. Finally pages 27-28 contain comments related to the absence of GUI

standards concerning the intuitive representation of intrusion related information in IDS

designs.

[15] Doyle J. Shrobe H, Szolovits P. (2000), „On widening the Scope of Attack Recognition

Languages‟, Massachusetts Institute of Technology, Cambridge, MA 02139

[16] Papadaki M., Magklaras G., Furnel S., Alayed A. (2001), „Security vulnerabilities and System

Intrusions – The need for Automatic Response Frameworks‟, Proceedings of the 2001 Small

Systems Security International Conference, Las Vegas, USA, September 2001.

[17] Staniford-Chen, S. and Heberlein T., “Holding Intruders Accountable on the Internet”,

Proceedings of the 1995 IEEE Symposium on Security and Privacy, Oakland, CA, May 8-10,

1995.

[18] Ranum M., Landfield Kent, Stolarchuk M., Sienkiewicz M., Lamberth A., Wall E.,

“Implementing a General Tool for Network Monitoring”, paper available at

http://www.nfr.net/publications/LISA-97.html

[19] Schneier B. (2001), „Managed Security Monitoring: Network Security for the 21
st
 Century‟,

Computers and Security Journal, Elsevier Science Ltd.,Volume 20, pages 491-503.

[20] Teng H., Chen K., Lu S. (1990), „Security Audit Trail Analysis Using Intrusive Generated

Predictive Rules‟, Proceedings of the 11
th

 IEEE National Conference on Artificial Intelligence

Applications, March 1990, pages 24-29.

[21] Kumar S. (1995), „Classification and Detection of Computer Intrusions‟, PhD Thesis, Purdue

University, 1995.

[22] Me, L. (1998), „GASSATA, A Generic Algorithm as an Alternative Tool for Security Audit

Trail Analysis‟, First International Workshop on the Recent Advances in Intrusion Detection,

Louvian-la-Neuve, Belgium, September 1998.

 211

[23] Cohen F. (1994), „A Short Course on Computer Viruses‟, John Wiley and Sons, ISBN:0-471-

38367-8.

[24] Goodrich M., Tamassia R. (2001), „Data structures and Algorithms in Java‟, Second Edition,

John Wiley and Sons Inc., ISBN:0-471-38367-8.

[25] Porras P. (1992), „A state transition analysis tool for Intrusion Detection‟, University of

California, paper found at http://www.csl.sri.com

[26] Kumar S., Spafford E. (1994), “A Pattern Matching Model for Misuse Intrusion Detection”,

The COAST Project, Department of Computer Sciences, Purdue University, USA

[27] Newsham T., Ptacek T. (1998), “Insertion, Evasion, and Denial of Service: Eluding Network

Intrusion Detection”, Technical Paper, Secure Networks Inc., URL:

http://www.securityfocus.com/library/745

[28] Smaha, S., “Haystack: An Intrusion Detection System”, Proceedings of the Fourth IEEE

Aerospace Computer Security Applications Conference, Orlando, FL, December 1988.

[29] The Common Intrusion Detection Framework (CIDF), URL: http://www.isi.edu/~brian/cidf

[30] The Intrusion Detection Working Group is hosted at the IETF‟s Working Group site,

URL:http://www.ietf.org/idwg

[31] Furnell S., Dowland P. (2000), „A conceptual architecture for real-time intrusion monitoring‟,

Information Management and Computer Security, MCB University Press, Volume 8 Number

2, pages 65-74.

[32] Pfleeger C., Pfleeger S. (2003), „Security in Computing‟, Third Edition, Prentice Hall,

ISBN:0130355488.

[33] Anderson J. (1980), „Computer Security Threat Monitoring and Surveillance‟, James P.

Anderson Co., April, Fort Washington, PA.

[34] “SNORT: The Open Source Intrusion Detection System”, URL:

http://www.snort.org/about.html

[35] Wu S., Manber U. (1994), “A Fast Algorithm For Multi-Pattern Searching”, Department of

Computer Science, University of Arizona.

[36] SourceFire Incorporation (2003), “High Performance Multi-Rule Inspection Engine ”, Vendor

Paper outlining the SNORT Rules Definition Language , URL: http://www.sourcefire.com

 212

[37] SourceFire Incorporation (2003), “Real Time Network Awareness™: Redefining the Intrusion

Detection Industry”, Vendor Paper outlining its latest IDS Commercial Framework solutions,

URL: http://www.sourcefire.com

[38] More information about the NID family of products can be found at the Vendor‟s web site,

URL: http://www.nfr.com

[39] Subramanian M. (2000), “Network Management: Principles and Practice”, Addison Wesley,

ISBN: 0201357429

[40] Harrington D., Presuhn R., Wijnen B. (1998), “An Architecture for Describing SNMP

Management Frameworks”, Request For Comments (RFC) 2271, Network Working Group

[41] Waldbusser S. (1995), “Remote Monitoring Management Information Base”, Request For

Comments (RFC) 1757, Network Working Group

[42] Internet Security Systems (ISS) Vendor Web Site, URL: http://www.iss.net/download/

[43] Gibson J., Huntington-Lee J., Terplan K. (1997), “HP‟s Open View”, The McGraw-Hill Series

on Computer Communications , ISBN: 0070313822

[44] Network Magazine On-line Portal (2002), “Strategies & Issues: Thwarting Insider Attacks” ,

article written by Jim Carr,

URL: http://www.networkmagazine.com/article/NMG20020826S0011

[45] E-Trust software suite, Computer Associates Vendor Web Site, URL:

http://www3.ca.com/Solutions/Product.asp?ID=3224

[46] Palisade Systems VendorWebSite,

URL:http://www.palisadesys.com/products/firemarshal/index.shtml

[47] Gibbons, R. (1992), “A Primer in Game Theory”, Prentice Hall International, ISBN:

0745011594

[48] Helbig K. (1993), “Modelling the Earth for Oil Exploration: Final Report of the CEC's

Geoscience I Program 1990-1993”, Pergamon Publishing, ISBN: 0080424198

[49] VNUnet Internet portal (2003), “Most cyber-attacks will come from insiders”, article written

by Robert Jacques,

URL: http://www.vnunet.com/News/1141354

 213

[50] Neumann P. (1999), ‟The Challenges of Insider Misuse‟, SRI Computer Science Laboratory,

Paper prepared for the Workshop on Preventing, Detecting, and Responding to Malicious

Insider Misuse, 16-18 August 1999, RAND, Santa Monica, CA.

[51] Caelli W., Longley D., Shain M. (1991), „Information Security Handbook‟, Stockton Press.

[52] PriceWaterhouseCoopers Internet portal (2004), “Information Security Breaches Survey 2004

– Technical Report”, URL:

http://www.pwc.com/images/gx/eng/about/svcs/grms/2004Technical_Report.pdf

[53] Computer Security Institute (2003), “2003 CSI/FBI Computer Crime and Security Survey”,

URL: http://www.gocsi.com/

[54] Computer Security Institute (2002), “2002 CSI/FBI Computer Crime and Security Survey”,

Computer Security Issues & Trends, Vol. VIII, NO.1.

[55] Computer Security Institute (2001), “2001 CSI/FBI Computer Crime and Security Survey”,

Computer Security Issues & Trends, Vol. VII, NO.1.

[56] TecSec Internet portal, URL: http://tecsec.com/SetFrame.asp?Sec=CKM1

[57] Rapid 7 Internet portal, URL: http://www.rapid7.com/docs/NetworkSecuritySurvey.pdf

[58] Computerworld Internet Portal (2000), “The Cyber-Mod Squad Sets Out After Crackers”,

Article written by Deborah Radcliff documenting the case of Abdelkader Smires

URL: http://www.computerworld.com/news/2000/story/0,11280,45927,00.html

[59] ZDnet Internet Portal (2001), “Firms shop around for Net law jurisdictions”, article written by

Wendy McAuliffe

URL: http://news.zdnet.co.uk/business/0,39020645,2085983,00.htm

[60] The University of Oslo November 2002 widespread cracking incident was quoted amongst

various sources in the Cybersecurity- Infrastructure protection website of Dartmouth College,

USA.

URL:

http://news.ists.dartmouth.edu/snms/1102.htm#30

[61] PC World Internet portal (2001), “Are employees wasting time on-line?” article written by

Scarlet Pruitt, URL: http://www.pcworld.com/news/article/0,aid,56947,00.asp

 214

[62] Indiana University Unix System Support Group (1997), “Unix Workstation System

Administration Education Certification Course”, On-line manual in URL:

http://www.ussg.iu.edu/edcert/session2/disk/diskspace.html

[63] O-Reilly Net Portal (2001), “System-and Network-wide bandwidth shaping for P2P apps”,

article written by Damien Stolarz, URL: http://www.oreillynet.com/pub/wlg/549

[64] Bishop M. (1995), “Intruders and UNIX”, Technical Presentation, Department of Computer

Science, University of California at Davis, slide 6 mentions the relevent intrusion concealment

tools

 URL: http://seclab.cs.ucdavis.edu/projects/vulnerabilities/scriv/1995-ns.pdf

[65] Furnell S., Magklaras G., Papadaki M., Dowland P. (2001), „A Generic Taxonomy for

Intrusion Specification and Response‟, Proceedings of Euromedia 2001, Valencia, Spain,

pages: 125-131.

[66] Neumann P., Parker D. (1989), ‟A summary of computer misuse techniques‟, In Proceedings

of the 12
th

 National Computer Security Conference, Baltimore, USA, pages: 396-407.

[67] Lindqvist U., Jonsson E. (1997),”How to systematically classify Computer Security

Intrusions”, Proceedings of the 1997 IEEE Symposium on Security and Privacy, May 4-7,

1997, IEEE Computer Society Press.

[68] Howard, J. (1997), “An Analysis of Security Incidents on the Internet 1989-1995”, PhD

Thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

[69] Tuglular T. (2000), “A preliminary Structural Approach to Insider Computer Misuse

Incidents‟, EICAR 2000 Best Paper Proceedings: pages 105-125.

[70] Magklaras G., Furnell S. (2002), “Insider Threat Prediction Tool: Evaluating the probability

of IT misuse”, Computers & Security, Elsevier Science Ltd, Vol. 21, No. 1, pages: 62-73.

[71] Shaw E.D., Ruby K.G., Post J.M. (1998), “The Insider Threat to Information Systems”,

Security Awareness Bulletin, No. 2/98, Political Psychology Associates Ltd.

[72] Bach M. (1986), 'The design of the UNIX Operating System', Prentice Hall International

Editions, NJ, 1986.

[73] Richter J. (1997), 'Advanced Windows', Microsoft Press, Redmond, Washington.

 215

[74] Aslam T., Krsul I., Spafford E., „Use of a Taxonomy of Security Faults‟, Technical Report

TR-96-051, COAST Laboratory, Department of Computer Sciences, Purdue University, IN,

1996.

[75] Moore D., Voelker G., Savage S. (2001), “Inferring Internet Denial of Service Activity”,

Proceedings of the 2001 USENIX Security Symposium, Washington D.C.

[76] Frykholm N., (2000), “Countermeasures against Buffer Overflow Attacks”, White Paper, RSA

Laboratories.

[77] Postel J., Reynolds J. (1983), ”TELNET PROTOCOL SPECIFICATION”, IETF Network

Working Group Internet Request For Comments (RFC) Number 854.

[78] Ylonen T. (1995), “The SSH (Secure Shell) Remote Login Protocol”, IETF Network Working

Group Internet Draft, Helsinki University of Technology, URL:

http://www.free.lp.se/fish/rfc.txt

[79] Ziegler R. (2002), “LINUX Firewalls”, Second Edition, New Riders Publishing, ISBN:

0735710996, Chapter 2, pages 48-50.

[80] Sharda N. (1999),”Multimedia Information Networking”, Prentice Hall Inc., ISBN:

0132587734, Chapter 12.

[81] Sommerville I. (2000), “Software Engineering”, Addison Wesley, ISBN: 020139815X

[82] Wood B. (2000). “An insider threat Model for Adversary Simulation”, SRI International,

Research on Mitigating the Insider Threat to Information Systems - #2: Proceedings of a

Workshop Held by RAND, August 2000.

[83] Schultz, E.E. (2002). “A framework for understanding and predicting insider attacks”,

Computers & Security, vol. 21, no. 6, pp. 526-531.

[84] Dubois P. (2003). “MySQL™ , The definitive guide to using, programming and administering

MySQL 4 databases”, New Riders Publications, ISBN: 0735712123.

[85] Evans, G., Simkin, M. 1989. “What Best predicts Computer Proficiency?” Communications of

the ACM (32:11), November 1989, pages 1322-1327.

[86] Huff S., Munro M., Marcolin B. 1992. “Modeling and measuring End User Sophistication”,

University of Western Ontario, Canada, Paper Published on the 1992 ACM Proceedings,

ACM 089791-501-1/92/0004/0001

 216

[87] EMBOSS.org portal, The European Molecular Biology Open Software Suite.

http://www.emboss.org

[88] The Basic Local Alignment Search Tool (BLAST).

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/references.html

[89] Socolofsky T., Cale C. (1991) “A TCP/IP Tutorial”, Internet Request For Comment (RFC)

number 1180, Network Working Group, Internet Engineering Task Force.

[90] International Standards Organisation (ISO) web portal. “Open systems interconnection in

general”, ICS Field 35.100.01.

[91] Kapoor A. (1992). “SNA: Architecture, Protocols and Implementation”, McGraw-Hill

Education, ISBN: 0070337276

[92] Schneeweiss W. (1989). “Boolean Functions: With Engineering Applications and Computer

Programs”, Springer Verlag Publications, ISBN: 0387188924.

[93] Lee, A. (1992). “Investigations into history tools for user support.” Ph.D. Thesis, Department

of Computer Science, University of Toronto, Ontario, Canada.

[94] Greenberg, S. (1993). “The computer user as toolsmith: The use, reuse, and organization of

computer-based tools”. Cambridge University Press

[95] Davison B., Hirsh H. (1998). “Predicting Sequences of User Actions”, Working Notes of the

Joint Workshop on Predicting the Future: AI Approaches to Time Series Analysis, Fifteenth

National Conference on Artificial Intelligence (AAAI98)/Fifteenth International Conference

on Machine Learning (ICML98).

[96] Brassard G. (1985). “Crusade for a better notation”, SIGACT News, vol.17, no. 1, pages 60-

64.

[97] Cybercast News Service portal. “Anti-Porn Bill Targets Internet 'File Sharing'”, article written

by Lawrence Morahan, CNSNews.com Senior Staff Writer, July 28 2003.

URL:http://www.cnsnews.com/ViewNation.asp?Page=%5CNation%5Carchive%5C200307%

5CNAT20030728a.html

[98] The Mutella web portal software can be found on the following URL:

http://mutella.sourceforge.net/

[99] Netscape Communications Web Portal. “Viewing or clearing the Netscape History File”,

URL:

 217

http://help.netscape.com/kb/consumer/19960627-14.html

[100] ZDNET UK Internet Portal . ”Supercomputers to run Windows”, article written by Stephen

Shankland and Ina Fried, May 25
th

 2003.

URL:http://insight.zdnet.co.uk/hardware/servers/0,39020445,39155685,00.htm

[101] The LINUX Operating System Internet portal. URL: http://www.linux.org

[102] The FreeBSD Operating System Internet portal. URL: http://www.freebsd.org

[103] Tech Web Internet Portal. “Linux Paces Strong Server Growth”, article written by W. David

Gardner, May 28
th

 2004, URL:

http://www.techweb.com/wire/story/TWB20040528S0007

[104] PC World Internet portal. “Will Your Next Desktop PC Run Linux? The alternative OS is

finally gaining momentum on the desktop.”, article written by Alexandra Krasne, May 27
th

2004. URL:http://www.pcworld.com/news/article/0,aid,116298,00.asp

[105] Ousterhout J. (1998). “Scripting: Higher Level Programming for the 21st Century”, IEEE

Computer magazine, March 1998 issue, pages pp. 23-30.

[106] “The Great Computer Language Shootout”, Doug Bagleys programming language

performance guide, regular expression section. Note: This informal benchmark guide quotes

results that are based on the performance of compilers on the year 2001. URL:

http://www.bagley.org/~doug/shootout/bench/regexmatch/

[107] Microsoft TechNet Internet portal. URL:

http://msdn.microsoft.com/library/default.asp?url=/library/enus/adschema/adschema/a_securit

yidentifier.asp

[108] The PostgrSQL RDBMS Internet portal. URL: http://www.postgresql.org/

[109] Fermi National Accelerator Laboratory Internet portal. “PostgreSQL or MySQL?”,

PostgrSQL-MySQL RDBMS comparison guide written by the Laboratory‟s Database Systems

Group, URL:

http://www-css.fnal.gov/dsg/external/freeware/pgsql-vs-mysql.html

[110] Oracle Corporation Internet portal. URL: http://www.oracle.com/products/

[111] Sybase Corporation Internet portal. URL: http://www.sybase.com/home

[112] International Business Machine Corporation DB2 Internet portal. URL:

http://www-306.ibm.com/software/data/db2/

 218

[113] Infoworld Internet portal. “Affordable 64-bit computing”, article written by Tom Yager, June

18
th

 2004. URL:http://www.infoworld.com/article/04/06/18/25FE64bits_1.html

[114] Dwivedi H. (2003). “Implementing SSH: Strategies for Optimizing the Secure Shell”, John

Wiley & Sons INC, ISBN: 0471458805.

[115] U.S. Department of Commerce/National Institute of Standards and Technology.(1999). “Data

Encryption Standard (DES)”, FIPS PUB 46-3.

[116] U.S. Department of Commerce/National Institute of Standards and Technology.(2001).

“Advanced Encryption Standard (AES)”, FIPS PUB 197.

[117] Schneier B.(1993). “Fast Software Encryption”, Cambridge Security Workshop Proceedings

(December 1993), Springer-Verlag, 1994, pp. 191-204.

[118] Diffie W., Hellman M.(1976). “New directions in cryptography”, IEEE Transactions on

Information Theory, Volume 22, pages 644-654.

[119] Diffie W., Van Oorschot, Wiener M. (1992), “Authentication and authenticated key

exchanges”, Designs, Codes and Cryptography Journal, Volume 2, pages 107-125.

[120] Leach P., Perry D. (1996). “CIFS: A Common Internet File System”, Microsoft Internet

Developer periodical, November 1996 issue.

[121] Lechnyr D. (2004). “The Unofficial Samba HOWTO”, The „Introduction‟ section contains a

reference to a document with title “CIFS:Common Vulnerabilities Fail Scrutiny”, written in

1997, and discussing a range of data security issues of the CIFS protocol at a technical level.

[122] SAMBA” open source project Internet portal. URL: http://www.samba.org

[123] Johnson M., Troan E. (1998). “LINUX Application Development”, Addison Wesley, ISBN:

0201308215

[124] “Snoopy” logger project Internet portal. URL: http://sourceforge.net/projects/snoopylogger/

[125] Mano M. (1993). “Computer Systems Architecture”, International Edition, Prentice Hall,

ISBN: 0131757385

[126] Liu J., Balasubramanian Chandrasekaran Yu W., Sushmitha P., Wyckoff P. (2004),

“Microbenchmark performance comparison of high-speed cluster interconnects”, IEEE

Micro, Volume: 24, Issue: 1, On page(s): 42- 51

[127] The Condor Project Home Page at the University of Wisconsin . URL:

http://www.cs.wisc.edu/condor/

 219

[128] U.S. National Security Telecommunications And Information Systems Security Committee

(1999), “The Insider Threat To US Government Information Systems”, NSTISSAM

INFOSEC /1-99.

[129] Kaspersky Laboratories Internet Portal. URL: http://www.kaspersky.com/technologies

[130] Symantec Internet portal. URL: http://www.symantec.com/avcenter/reference/heuristc.pdf

[131] Magklaras G., Furnell S. (2004), ”An End User Sophistication Model for Insider Threat

Prediction in IT Systems”, submitted to Computers and Security

[132] Vacca J. (2002), “Computer Forensics: Computer Crime Scene”, Charles River Media, ISBN:

1584500182

[133] Ramming C. (1997), „USENIX Conference on Domain Specific Languages‟, USENIX

Association, Santa Monica, CA, USA

[134] Feiertag R., Kahn C., Porras P., Schnackenberg D., Staniford-Chen S., Tung B. (1999), “A

Common Intrusion Specification Language (CISL)”, June 1999 revision, URL:

http://www.isi.edu/~brian/cidf/drafts/language.txt

[135] Doyle J. (1999), “Some representational limitations of the Common Intrusion Specification

Language”, Laboratory for Computer Science, Massachusetts Institute of Technology,

Cambridge, MA 02139, November 1999 Revision

[136] Curry D., Debar H., Feinstein B. (2004), “The Intrusion Detection Message Exchange

Format”, Internet Draft, Intrusion Detection Exchange Format working group, Internet

Engineering Task Force, URL: http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-

11.txt

[137] Feinstein B., Matthews G., White J. (2002), “The Intrusion Detection Exchange Protocol

(IDXP)”, Internet Draft, Intrusion Detection Exchange Format working group, Internet

Engineering Task Force

URL: http://www.ietf.org/internet-drafts/draft-ietf-idwg-beep-idxp-07.txt

[138] World Wide Web Consortium (W3C) Internet portal, “Extensible Markup Language”, URL:

http://www.w3.org/XML/

