
LUARM – An audit engine for insider misuse detection

G.Magklaras, S.Furnell and M.Papadaki

Centre for Security, Communications and Network Research, University of
Plymouth, Plymouth, UK
cscan@plymouth.ac.uk

Abstract

'Logging User Actions in Relational Mode' (LUARM) is an open source audit engine for
Linux. It provides a near real-time snapshot of a number of user action data such as file access,
program execution and network endpoint user activities, all organized in easily searchable
relational tables. LUARM attempts to solve two fundamental problems of the insider IT
misuse domain. The first concerns the lack of insider misuse case data repositories that could
be used by post-case forensic examiners to aid an incident investigation. The second problem
relates to how information security researchers can enhance their ability to specify accurately
insider threats at system level. This paper presents LUARM's design perspectives and a 'post
mortem' case study of an insider IT misuse incident. The results show that the prototype audit
engine has a good potential to provide a valuable insight into the way insider IT misuse
incidents manifest on IT systems and can be a valuable complement to forensic investigators
of IT misuse incidents.

Keywords

Insiders, misuse, detection, auditing, logging, forensics

1. Introduction

The problem of insider IT misuse is a very real threat for the health of IT
infrastructures encompassing both intentional activities (e.g. targeted information
theft and accidental misuse (e.g. unintentional information leak). Numerous studies
have tried to define an “insider” in the context of Information Security. A generic
definition from Probst et al. (2009) is ”a person that has been legitimately
empowered with the right to access, represent, or decide about one or more assets of
the organization's structure”.

The most widely known insider misuse cases are usually about intellectual property
theft. The arrest of Lan Lee and Yuefei Ge by FBI agents (Cha, 2008) is a classic
case. The arrested men were engineers of NetLogic Microsystems (NLM) until July
2003. During the time of their employment, they were downloading trade sensitive
documents from the NLM headquarters into their home computers. These documents
contained detailed descriptions of the NLM microprocessor product line. Eventually,
their ties to the Chinese government and military were discovered by investigators.
However, both mass media case descriptions and relevant security surveys do not
provide the tools or the methodology to systemically study and mitigate the problem.
Insider IT misuse is a multi-faceted problem and one of the things insider misuse
researchers really need is a repository of more detailed case descriptions with a focus

on the impact insider misuse actions have at computer system level (NSTISSAM).
This is the area of Insider Threat Specification, the core concept behind the proposed
logging engine which is examined in the next section.

2. Insider Threat Specification and modelling

Threat specifications follow the principles of intrusion specification, a concept which
is not new in the information security world. Techniques to describe threats exist for
an entire range of information security products, from anti-virus software to several
intrusion detection/prevention systems (IDS/IPS) (Bace, 2000), where threats are
specified by anomaly detection, pattern matching (also known as misuse detection)
mechanisms or a heuristic-based combination of the two. Insider Threat
Specification is the process of using a standardized vocabulary to describe in an
abstract way how the aspects and behaviour of an insider relate to a security policy
defined misuse scenario. Figure 1 shows the information flow of a typical IT misuse
detection system. The security specialist translates the Security (and resulting
monitoring policy) into a set of misuse scenario signatures, standard descriptions of
IT misuse acts that describe the behaviour of a user at process execution, filesystem
and network endpoint level (Magklaras et al, 2006). The misuse scenario signatures
and collected audit data (Bace, 2000) from the IT infrastructure are fed into a misuse
detection engine.

Figure 1: Information flow in an insider misuse detection system

Vital to insider threat specification is the structure and content of the audit record, at
the center of Figure 1. If the audit record is incomplete, in terms of the type of
information we need to log or unavailable, because the data are vanished due to bad
system design or intentional data corruption, the specification of insider threats is
useless. This is one of the primary objectives that LUARM tries to address by
providing an evidence rich and reliable audit record format.

3. Insider misuse detection auditing requirements

Bace (Bace, 2000) discusses intrusion detection (and hence misuse detection) as an
audit reduction problem. Audit reduction is the process of filtering the relevant

information out of the audit records, in order to infer a partially or fully realized
threat and excluding information that is irrelevant or redundant. The structure of an
audit record is important for a misuse detection system. A good structure has well
defined fields that can be easily parsed. Moreover, the structure of the audit record
should easily facilitate relational type queries. It is necessary for the information to
be applied on the disjunction (OR), conjunction (AND), and negation (NOT)
operators, in order to increase the query versatility and speed of response.

A desired aspect of a suitable crafted audit record format for insider misuse detection
is clear user accountability. This means that the audit record should be able to
reliably and easily associate user entities to recorded actions. The wealth and
replication of vital information in various types of audit records is a requirement for
proper event correlation and step instance selection (Meier, 2004).

Another important issue of audit record engines is that of referencing time. In large
IT infrastructures that span several networks and time zones, audited systems might
report in different time formats. They can also experience 'clock skew', a difference
in time recorded amongst computer systems due to computer clock hardware
inaccuracies, especially when an NTP (Mills et al, 2010) server is not available to
provide a reliable time source.

One of the most recent and commonly referenced works that concern the format of
audit records is the Common Criteria for Information Technology Security
Evaluation (Common Criteria Portal, 2009) standards. The Common Criteria (CC)
effort does not fully address the previously mentioned audit record requirement
omissions of its predecessor, the Orange Book (DOD 5200.28-std, 1985). However,
some of its high level functional audit requirements are interesting. In particular, CC
requirement 88 of section 8.2 states that: “At FAU_GEN.2 User identity association,
the TSF shall associate auditable events to individual user identities.” In CC
terminology TSF stands for Target of evaluation Security Functionality, meaning
essentially the software and hardware under evaluation. In addition, CC mentions a
set of requirements that concern various aspects of the audit record storage. Once
again, the requirements are given in high-level terms, specifying that:

 unauthorized deletion and/or modification of audit records

 any other condition that could cause storage failure.

should be mitigated.

The next section discusses whether today's audit engines satisfy these requirements.

4. Existing audit record engines

Audit record engines have existed since the very early days of operating systems.
However, not all of them fit the requirements of misuse detection engines, as
discussed in the previous section.

The most common variety of audit record engines uses information that comes
directly from the Operating System. Characteristic examples of this category of
engines are Oracle's Basic Security Module (BSM) auditing system (Oracle
Corporation, 2010) and its open source implementation OpenBSM (Trusted BSD
Project portal, 2009), the psacct audit package (psacct utilities, 2003), as well as the
syslogd (Gerhards, 2009) and WinSyslogd (Monitorware, 2010) applications.

After examining these engines, serious deficiencies can be located in terms of use for
insider threat prediction. Firstly, many engines consolidate information from various
different devices and operating system vendors, but they are far from describing
sufficiently issues in an operating system agnostic way. In addition, process
accounting tools might not cover sufficiently the variety of different system level
information (file, process execution and network level). In fact, some of them might
miss data as described in (HP Portal, 2003). A logging engine that cannot facilitate
the description of both static and live forensic insider misuse system data at the
network, process and filesystem layer could hinder a forensic examination of an IT
misuse incident. Static digital forensic analysis is employed by most forensic tools
and cannot portray accurately the non-quiescent (dynamic) state of the system under
investigation. Information such as active network endpoints, running processes, user
interaction data (number of open applications per user, exact commands), as well as
the content of memory resident processes may not be recorded accurately on non-
volatile media. (Hay et al, 2009) discuss the shortcomings of static digital forensics
analysis in detail. In order to overcome the barriers of static analysis, Adelstein et al.
(2006) discuss the virtues of non-quiescent or live analysis, which essentially gathers
data while the system under-investigation is operational.

Several audit record systems do not report consistently the timing of audit record
generation. For instance, many implementations of the syslog audit standard and
psacct tools generate the audit record by entering the time stamp of the client system.
If the client system does not have a reliable time source, this generates inaccurate
information and could seriously hinder event correlation.

Finally, one of the most serious drawbacks of existing audit approaches is the
inability to store the audit information in a form that can utilize relational queries.
Section 3 discussed the reasoning behind this requirement. In one sense, some people
might argue that this is an audit management feature rather than an audit log design
issue. However, as section 3 discussed the advantages of using a relational schema to
form audit queries in a structured log record, the author's view is that everything that
increases the expressive power of an audit log query should be incorporated in the
structure of the audit log, rather than being left as an 'add-on' feature.

5. The LUARM audit engine

LUARM is a prototype Open Source audit record engine (LUARM portal, 2010) that
uses a Relational Database Management System (RDBMS) for the storage and
organization of audit record data. The employment of an RDBMS is a core design
choice for the LUARM engine. Beyond the relational type query support discussed
in Section 3, an RDBMS offers the necessary data availability, integrity and
scalability features, because most RDBMS tools are explicitly designed to organize

and store large amounts of data, as dictated by many CC requirements. The
Structured Query Language (SQL) facilitates instance selection and completion, as
well as data correlation can be performed by using clauses such as 'FROM' and
'WHERE'.

Figure 2: The LUARM architecture

Figure 3: LUARM relational table structure

Figure 2 depicts the module client-server architecture of the LUARM audit engine.
On the left of the figure, we can see a set of audited computer clients. Every client is
running a unique instance of a set of monitoring scripts. Each of the client scripts

audits a particular system level aspect of the operating system: 'netactivity.pl' audits
the addition and creation of endpoints, 'fileactivity.pl' records various file operations,
'psactivity' provides process execution audit records and 'hwactivity.pl' keeps a log of
hardware devices that are connected or disconnected from the system. The right hand
side contains the centralized server part of the architecture where audit data are
stored, maintained and queried in a MySQL (Oracle MySQL portal, 2010) based
RDBMS (other RDBMS systems could be used as well). The Perl programming
language is used to implement the modules and the communication between client
and server is performed via a Perl DBI (CPAN-DBI, 2010) interface.

The client-server architecture avoids leaving the data in vulnerable clients. The
central host MySQL server has its own authentication system responsible for
controlling who has access to the audit data. By authenticating audit reviewers
against the RDBMS authentication system, we de-couple the users being audited
from the auditors, a desirable property that ensures that audited insiders cannot easily
manipulate audit data. Furthermore, by assigning a separate database instance per
audited client, we reduce the likelihood of compromising the data for all clients. If
the database access credentials of one client are compromised, the damage is limited
to the audit data for that client only.

Figure 3 displays the relational table format for the four main types of recorded audit
data in LUARM: fileaccess, process execution, network endpoint and hardware
device information. Temporal information is provided by event creation time stamps
(cyear, cmonth, cday,chour,cmin,csec) and respective event destruction time stamps
(dyear,dmonth,dday,dhour,dmin,dsec). The combination of the two types of
timestamps can pinpoint exact time intervals for events in a consistent format for all
recorded event types. In contrast, most audit systems may provide only event
creation time references without hinting for the duration of an event.

The sampling of events is done at 100ms intervals and is adjustable by means of
modifying certain variables on each monitoring module. At first, this might seem
problematic as many attack steps can occur much faster than that amount of time.
However, in an event sampling loop, one has to account for the time delay to update
the database, which can vary from 10ms to 60-70 ms intervals on heavily loaded
clients and servers. In addition, time resolution varies amongst operating systems.
For these reasons, LUARM relies on the Perl Time::HiRes module (CPAN-HiRes,
2010) to bridge the gap between the different operating system timer
implementations. A time granularity of 100 ms is also a good compromise between
accuracy and scalability. The more granular the time resolution, the greater the
computational load for both the client and the server LUARM parts.

Another important design decision that concerns the format of the audit table was to
include common attributes amongst different event tables for the purposes of
increasing the ability to correlate events and provide user entity accountability. For
instance, fields such as 'username' (user entity), pid (numeric process ID of the
program responsible for the event creation) and application (string that represents the
name of the application that matches the pid) can be found in most of the event
tables. This enables the audit reviewer to use SQL and relate events, so he can form

queries of the type “Find the network endpoint created by program x of user y” in an
easy manner.

The 'fileinfo' table stores file access related events. The filename specification
consists of two parts. The 'filename' field which holds the filename with the file
extension (i.e. data.txt) and the 'location' field which contains the absolute path of the
file. The fact that the two are divided in separate fields makes it easier to search by
location or by field name only, increasing the versatility of mining file data. In order
to populate the data on this table, LUARM relies on the 'lsof' utility (Pogue et al,
2008). The utility is versatile and can record a variety of events including file and
network endpoints in real time. It exists for an entire range of UNIX/Linux and
MACOSX operating systems, covering a large spectrum of computing devices.

The 'netinfo' table logs the creation and destruction of network endpoints. In the
context of LUARM, the term 'network endpoint' refers to the operating system data
structures employed to facilitate network connectivity via the TCP/IP protocol suite.
Network endpoint activity is considered as live forensic data. A series of table fields
are used to record endpoint details ('sourceip', 'destip', 'sourceport' , 'destport' and
'transport' record source and destination IP addresses, source and destination port and
transport protocol respectively). The fields 'sourcefqdn' and 'destfqdn' hold the DNS
(Mockapetris, 1987) resolved Fully Qualified Domain Name (FQDN) for the source
and destination hosts.

The 'sourcefqdn' and 'destfqdn' fields are not populated by the client LUARM
routines. In contrast, they are populated on the LUARM server side. Due to the
criticality of correct DNS data for the audit records, the frequent DNS configuration
errors (Barr, 1996), aspects of DNS operational security (Bauer, 2003) and client
performance, the endpoint name resolution is left on the server side. This provides a
greater control on DNS derived data and does not rely on vulnerable clients
(malicious insiders or software vulnerabilities) for auditing network connections.

Process execution activity is recorded in the 'psinfo' table (Figure 3). This table
records 'live' forensic data. The table includes both the proces ID ('pid') and parent
process id ('ppid'), so that process execution flow can be traced back to the original
process. In order to speed up process execution searches, the LUARM engine also
separates the executed command ('command') from its arguments ('arguments'). One
might like to search them separately in the process of mining process execution data.
The 'ps' UNIX/Linux utility (Pogue et al, 2008) is used to collect process
information. For all active processes (whose d* temporal fields are NULL), LUARM
updates in near real time these two fields.

The 'hwinfo' table logs 'live' device connection and disconnection events. All events
generated by devices that connect to the Peripheral Component Interconnect (PCI
and PCI-Express) and Universal Serial (USB) buses. These two buses are commonly
found on a large array of computing devices. For instance, an audit reviewer or
forensics analyst might correlate file activity to a portable storage medium
connection, as part of an intellectual property theft scenario. In that case, the 'hwinfo'
table logs information in various fields that help identify the attached device
('devstring', 'devvendor'), the bus the device was connected to ('bus') and correlate

the device attachment event against a number of users that are logged into the system
at the time of the device attachment ('userslogged').

6. LUARM in action

Having a proposed structure and content for the various categories of audit events as
described in the previous section, we can now issue sample SQL statements to
illustrate how audit data mining is performed. Figure 4 displays sample queries that
demonstrate the expressiveness of LUARM's audit record content and structure.

There are a few important observations to make about the example LUARM SQL
queries. The first one concerns the embedding of system specific knowledge inside
the statement. In essence, the third example of Figure 4 defines a step of an insider
trying to transfer a sensitive file to a portable medium. One has to know the name of
the sensitive file 'prototype.ppt' and also the fact that '/media' is used as a mount
point for portable media for that host. Additional possible destination locations could
be specified by means of OR operators. The use of the 'RLIKE' operator (RLIKE
RegExp, 2008), always in relation to the second and third examples of Figure 4. The
operator implements a regular expression type of match. Apart from the conjunction
operator (OR), regular expressions give the specification polymorphic properties
(one specification string, many matching results), a desirable property for compact
misuse detection language statements.

Figure 4: Using SQL to mine data in LUARM

LUARM was tested on a variety of simulated insider misuse scenarios. The scenarios
were derived by real world LUARM captured data. However, permission to publish
the original audit data was not obtained by the organizations in question. Thus, we
had to reconstruct the misuse incidents by means of writing down a text based
description of each incident and ask a team of users to re-enact it under a controlled
IT infrastructure. The following paragraphs will present one of these incidents and
demonstrate how the correlation versatility of the LUARM relational audit log

structure can shed forensic light into the actions of a malicious insider. The scenario
is provided below:

'Autobrake' Corp is a company designing car braking systems. Their engineering
department is the most information sensitive work area. The braking system
design process takes place in high performance Linux workstations, one for each
design engineer. The engineers have normal user rights to the workstations.
Superuser rights (root) is given only to the IT admin. The designs reside on the
local hard drives of the workstations and the company's IT policy forbids any
transfer of sensitive data to portable media. Autobrake's system administrator has
requested a salary raise various times. This has been denied by management. The
system administrator is lured by a competing company that asked him to deliver
schematics of the new and revolutionary Autobrake's RGX9 SUV braking system
in return for a large amount of money. Enjoying the trust of everyone and having
full control of the engineering CAD workstations, the system administrator
decides to take the offer of the competing company. He performs the intellectual
property theft by following a well designed approach which is summarized
below:

• He carefully chooses the user account of a mechanical engineer (username
'engineer3') that had some disputes over work issues with management. He
aims to avoid detection by means of masquerading as the engineer in
question.

• After successfully masquerading as the engineer in the IT system he uses a
portable USB key to obtain the commercially sensitive RGX9 schematic,
leaving only the traces of the engineer “actions”.

Assuming that a third party auditor manages the audit process and monitors the
logging (ensuring that the logging infrastructure works) and that all Engineering
workstations are monitored by LUARM, we are now tasked to find the offender and
clear the name of 'engineer3'. The reader should consult the LUARM relational table
structure (Figure 3), in order to follow the SQL queries presented below.

The investigation begins from the most important file, that of RGX9, and the people
that work on it. From the audit record of the workstations with name 'proteas', we
utilize LUARM to find out who has been using the file:

mysql> select username,pid,cday,chour,cmin,location,filename from fileinfo
where filename RLIKE 'RGX9' OR location RLIKE 'RGX9' \G

From the many hits we get from the data base, we focus our attention on the
following ones:

*************************** 111. row ***************************
username: engineer3
pid : 8301
cday: 4

chour: 15
cmin: 30
location: /storage/users/engineer3/work/designs
filename:RGX9.jpg
...
*************************** 118. row ***************************
username: engineer3
pid: 28538
cday: 4
chour: 15
cmin: 32
location: /media/U3SAN03-12
filename: RGX9.jpg

The reason these file access patterns looked suspicious is that they were different
than the normal pattern of accessing the file by the staff engineer. Normally, user
'engineer3' would access the file by means of certain design and image editing
applications, under its usual directory (/storage/users/engineer3/work/designs). This
time, however, things look a bit different, if one follows the association of file access
to process execution, in order to confirm which programs performed the file
transaction. The following SQL queries achieve the desired association:

mysql>select username,pid,command,arguments,cyear,cday,chour,cmin from
psinfo where username='engineer3' AND pid='8031' AND cyear='2011' AND
cday='4' AND chour='15' AND cmin='30;

*************************** 1. row ***************************
username: engineer3
pid: 8031
command: /bin/cp
arguments: work/designs/RGX9.jpg /tmp/
cyear: 2011
cday: 4
chour: 15
cmin: 30

mysql>select username,pid,command,arguments,cyear,cday,chour,cmin from
psinfo where username='engineer3' AND pid='8031' AND cyear='2011' AND
cday='4' AND chour='15' AND cmin='30;

*************************** 1. row ***************************
username: root
pid: 28538
command: mv
arguments: RGX9.jpg /media/U3SAN03-12
cyear: 2011
cday: 4
chour: 15

cmin: 32

Essentially, the previous results verify that the file was first copied from the normal
directory to /tmp and then was moved to the /mnt/usb. At this point, a little bit of
system specific knowledge comes into light, as /mnt/usb is the usual mount point
where Linux links portable storage media to the filesystem. Hence, the question to
raise is whether a portal storage medium was connected to the workstation, prior to
the 'mv' file transaction. The query result yields a positive answer:

mysql> select * from hwinfo where cyear='2011' AND cmonth='01' AND
cday='04' AND chour='15'\G
*************************** 1. row ***************************
hwdevid: 71
md5sum: a16e7386f14de769a7a9491da2071f5b
cyear: 2010
cmonth: 12
cday: 4
chour: 15
cmin: 30
csec: 28
devbus: USB
devstring: Cruzer Micro U3
devvendor: SanDisk Corp.
userslogged: engineer3,root
dyear: 2010
dmonth: 1
dday: 4
dhour: 15
dmin: 33
dsec: 38

This database hit seems to be in line with the actions of engineer3, as it indicates a
device connection before the execution of the 'mv' command and a disconnection
well after the mv command. Thus, everything seems to point out that 'engineer3'
violated the company policy and transferred a sensitive file to a USB medium,
against the company IT regulations. However, this had been categorically denied by
the actual person. A good but non IT based alibi for the staff engineer was that he
exited the building with his security card token around 14:50, returning back to his
desk at 15:50, a wide gap for him. Clearly, something else was going on and the clue
was the 'userslogged' field of the last LUARM result. This 'hwinfo' LUARM table
field contains the usernames for accounts that are logged into the workstation at the
time of the device connection. Apart from 'engineer3' we note the root account being
active, which is clearly the only other choice that, under the circumstances, could
have performed the mount procedure.

Based on the time stamp of the mv operation, a careful investigation of the root
account actions reveals a key command execution, derived from the 'psinfo' table:

mysql> select * from psinfo where pid='27865' AND cyear='2011' AND
cday='4' AND cmonth='1' AND chour='15' AND cmin >= '20' AND cmin <='33'
\G
*************************** 1. row ***************************
psentity: 97654
md5sum: 7067284f2e1aefc430339ef091b4e41b
username: root
pid: 27865
ppid: 26407
pcpu: 0.0
pmem: 0.0
command: su
arguments: - engineer3
cyear: 2011
cmonth: 1
cday: 4
cmin: 28
chour: 15
csec: 36
dyear: 2011
dmonth: 1
dday: 4
dhour: 15
dmin: 28
dsec: 39

The 'su' command is used routinely by administrators to switch user credentials, in
order to test environment settings and perform system tasks (Garfinkel et al, 1996).
However, it can be easily used as a masquerading tool to covertly perform actions
using the credentials of somebody else. A further investigation also found the USB
key on the desk of the IT administrator with the RGX9.jpg file. The hwinfo table
device identifier data ('devstring', 'devvendor') as well as the mount point identifier
(/media/U3SAN03-12) from the psinfo commands contributed towards strengthening
the final piece of the puzzle.

This case shows the versatility of the relational structure of the LUARM record that
showed the way from simple file operation to related program execution and other
events that can provide strong evidence and lead to the misuser. In addition,
LUARM has also been used successfully to provide evidence about security
incidents of external origin (Magklaras, 2011). Thus, it offers a valuable complement
of existing logging mechanisms.

7. Conclusions

A very important tool to mitigate Insider IT misuse is an audit record which is
specifically designed to address its various needs, as well as complement existing
forensic tools when security specialists perform a post-mortem incident examination.
LUARM is an audit engine that provides a detailed log of user actions at file, process
execution and network endpoint level stored in a Relational Database Management

System. Its file, process and network endpoint data provide a dynamic forensic view
of the system, a useful complement to existing forensic tools that offer only static
data in their majority. The relational storage layer increases the correlation versatility
amongst the different types of audit data, as it is vital to be able to perform various
associations during the investigation of an incident (process to file, process to
network activity) and reliably relate actions to user entities.

The results are promising, showing a much better way to examine a system than
looking at static text files which are difficult to parse and even more difficult to
correlate. However, LUARM is a work in progress. It has its deficiencies and needs
many improvements, in order to become a production real-world audit engine for
insider misuse.

The first issue that was identified relates to the sampling frequency of user processes
execution. After examining carefully the consistency of audit logs, it became evident
that LUARM was losing process execution data. A fault was located at the process
execution monitoring module. Due to the way the sampling loop was written in that
module, the effective sampling frequency could exceed by far the desired 100
millisecond sampling frequency. As a result, LUARM would miss processes that
executed by various users in the system. The module was re-written using an
entirely different process execution sampling philosophy. A Linux kernel technique
called 'execve wrapping' was employed by adopting the Snoopy logger open source
software (Snoopylogger portal, 2000). A modified 'execve wrapper' logger like
'Snoopy' logger provides a way to log the process execution and its arguments
without relying on a sampling loop and is thus a more efficient interface to capture
live process execution data. This solved the problem of losing process execution data
due to a slow sampling rate and thus corrected an important deficiency of LUARM.

Addressing the issue of user privacy is not so straightforward. There is always a
tension between insider IT misuse monitoring and privacy. LUARM needs to retain
and collect data about a user's behavior, in order to help the analyst infer IT misuse.
In direct contrast, privacy dictates the right of individuals to define whether
somebody will collect data about their online actions and the extent or way the data
can be used. The best compromise between these two opposing needs is to control
the amount and type of logged data. This can be achieved by pseudo-anonymizing
certain parts of the audit record, in order to protect certain aspects of the user privacy
but still be able to infer IT misuse reliably. The term 'Privacy-Respecting Intrusion
Detection' (Flegel, 2007), encompasses all the efforts of achieving a good
compromise between the need to monitor and the need to respect user privacy.

The achievement of the LUARM prototype has been to demonstrate that structured
evidence based logging for IT misuse is feasible. The authors welcome feedback
and participation to the development of its code base. The prototype is not yet ready
for production deployment, but it should be suitable for experimentation and has
already proved its value on a number of insider IT misuse incidents.

8. Acknowledgements

The authors wish to thanks the University of Oslo IT engineers Harald Dahle, Jean
Lorentzen and Melaku Tadesse for helping with the simulation of various misuse
scenarios.

9. References

Adelstein F. (2006), “Live Forensics: Diagnosing Your System without Killing it
First”, Comm. ACM, vol.49, no.2, 2006, pp. 63-66.

Bace R. (2000), “Intrusion Detection”, Macmillan Technical Publishing,
Indianapolis, USA, ISBN: 1-578701856, pp. 38-39 discuss the terms 'misuse
detection' and 'anomaly detection' in an intrusion specification context, pp. 47-66
discuss various audit record issues.

Barr D. (1996), “Common DNS Operational and Configuration Errors”, Internet
Engineering Task Force (IETF) Request For Comment (RFC) 1537, February 1996.

Bauer M. (2003), “Building secure servers with Linux”, O'Reilly & Associates,
ISBN: 0-596-00217-3: Chapter 6, pp. 154-196.

Cha A.E. (2008), “Even spies embrace China's free market.”,
WashingtonPost,February15,2008,www.washingtonpost.com/wpdyn/content/article/
2008/02/14/AR2008021403550.html (Accessed 03 March 2011)

Common Criterial Portal (2009), “The Common Criteria for Information Technology
Security Evaluation”, Version 3.1, Revision 3, July 2009. Part 2: Functional security
components,www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R3.pdf
(Accessed 03 March 2011)

CPAN-DBI (2010), “The Perl Database Interface (DBI) module” at the
Comprehensive Perl Archive Network (CPAN),search.cpan.org/~timb/DBI-
1.615/DBI.pm (Accessed 03 March 2011)

CPAN-HiRes (2010), “The Perl High Resolution Timer module” at the
Comprehensive Perl Archive Network (CPAN),search.cpan.org/~jhi/Time-HiRes-
1.9721/HiRes.pm (Accessed 03 March 2011)

DOD 5200.28-std (1985), “Department of Defense Trusted Computer System
Evaluation Criteria”, National Computer Security Center: Orange Book, DOD
5200.28-std, December 1985.

Flegel U. (2007), “Privacy-Respecting Intrusion Detection”, Advances in
Information Security, Springer, ISBN: 978-0-0387-34346-4 .

Furnell S. (2004), “Enemies within: the problem of insider attacks”, Computer
Fraud and Security, Volume 2004 Issue 7, pp. 6-11.

Garfinkel S, Spafford G. (1996), “Practical UNIX and Internet Security”, Second
Edition, O’Reilly and Associates, Sebastopol, CA, ISBN: 1-56592-148-1

Gerhards R. (2009), “The Syslog Protocol”, Internet Engineering Task Force (IETF),
Request for Comment (RFC) 5424, March 2009.

Hay B., Nance K., Bishop M. (2009), “Live Analysis Progress and Challenges”,
IEEE Security & Privacy, Volume 7, Number 2, pp. 30-37.

HP Portal (2003), “psacct process accounting misses some commands”, HP IT
,forums11.itrc.hp.com/service/forums/questionanswer.doadmit=109447626+128638
1845785+28353475&threadId=1413576 (Accessed 02 February 2011)

LUARM portal (2010),luarm.sourceforge.net/ (Accessed 03 March 2011)

Snoopylogger (2000), http://sourceforge.net/projects/snoopylogger/ (Accessed 04
May 2011)

Magklaras G., Furnell S., Brooke P. (2006), “Towards an Insider Threat Prediction
Specification Language”, Information Management & Computer Security, (2006)
vol. 14, no. 4, pp. 361-381.

Magklaras G. (2011), “Catching an undesired guest in the penguin /tmp room”,
Epistolatory Blogspot, epistolatory.blogspot.com/2011/02/catching-undesired-guest-
in-penguin-tmp.html (Accessed 03 March 2011)

Meier M. (2004), “A Model for the Semantics of Attack Signatures in Misuse
Detection Systems”, K. Zhang and Y. Zheng (Eds.): ISC 2004, Springer-Verlag
Berlin,Heidelberg , LNCS 3225, pp. 158–169.

Mills D., Delaware U., Martin J., Burbank J., Kasch W. (2010), “Network Time
Protocol Version 4: Protocol and Algorithms Specification”, Internet Engineering
Task Force (IETF) Request For Comment (RFC) 5905, June 2010.

Mockapetris P. (1987), “Domain Names – Implementation and Specification”,
Internet Engineering Task Force (IETF) RFC 1035, November 1987.

Monitorware (2009), www.winsyslog.com/en/product/ (Accessed 03 March 2011)

NSTISSAM (1999), “The Insider Threat To US Government Information Systems”,
U.S. National Security Telecommunications And Information Systems Security
Committee, NSTISSAM INFOSEC /1-99.

Oracle Corporation (2010), “System Administration Guide:Security Services”,
Solaris 10 Operating System, Part No: 816–4557–19 , September 2010, pp. 559-
672,dlc.sun.com/pdf/816-4557/816-4557.pdf, (Accessed 03 March 2011)

Oracle MySQL portal (2010), www.mysql.com (Accessed 03 March 2011)

Pogue C., Altheide C., Haverkos T. (2008), “Unix and Linux Forensic Analysis DVD
Toolkit”, Syngress, 2008, ISBN: 978-1-59749-269-0.

Probst C., Hunker J., Bishop M., Gollman D. (2009), “Countering Insider Threats”,
ENISA Quarterly Review Vol. 5, No. 2, June 2009, pp. 13-14.

Psacct utilities (2003), Utilities for process activity monitoring,
linux.maruhn.com/sec/psacct.html (Accessed 03 March 2011)

Rivest R. (1992), “The MD5 Message-Digest algorithm”, Internet Engineering Task
Force (IETF) Request For Comment (RFC) 1321, April 1992.

RLIKE RegExp (2008), “String Regular Expression Operator”, MySQL 5.1 Manual,
Oracle Corporation,dev.mysql.com/doc/refman/5.1/en/regexp.html (Accessed 03
March /2011)

Trusted BSD Project portal (2009), “OpenBSM: Open Source Basic Security Module
(BSM) Audit Implementation”,www.trustedbsd.org/openbsm.html (Accessed 03
Match 2011)

	1. Introduction
	2. Insider Threat Specification and modelling
	3. Insider misuse detection auditing requirements
	4. Existing audit record engines
	5. The LUARM audit engine
	6. LUARM in action
	7. Conclusions
	8. Acknowledgements
	9. References

