LUARM AND ITPSL
Sensing and specifying Insider Threats

‘::: /'ﬂ"‘-:..-"ﬁl*

(W e
:11.,____‘_.., 1“*-.. : H—ﬂ !"“

e

P
i

George Magklaras
Center for Security, Communications and Network Research
University of Plymouth
http.//www.cscan.org

http://luarm.sourceforge.net/

http://www.cscan.org/

Agenda

Point 1: Insider threat specification and its requirements
Point 2: Forensics to aid insider threat mitigation

Point 3: LUARM: A tool to create insider threat data
repositories

Point 4: ITPSL: A tool to specify threats by mining insider
threat data repositories

Insiders (visually)

Defining the “insider”

“An insider is a person that has been
legitimately empowered with the right
to access, represent, or decide about
one or more assets of the
organization's infrastructure.”

= http://www.dagstuhl.de/08302

Defining “Insider Threat
Specification”

Insider Threat Specification is the process of using a
standardized vocabulary to describe in an abstract way
how the aspects and behavior of an insider relate to a
security policy defined misuse scenario.

Notes on the Insider Threat
Specification Definition

Standardized vocabulary: Taxonomies and ontologies of
the research literature

Aspects: character, personality, organizational role,
financial status

Behavior: The actions of an individual in relation to
accessing, representing or deciding about organizational
assets.

Threat relation:
Concerns the execution of the threat (threat detection)
Concerns signs of the threat (threat prediction)

Event significance

Temporal dimension of an Insider
Threat

A
S e Threat prediction » Threat detection
§ event 4
event 3
event 2 'Um Using p2pclient
1.Installing file = g g loniloEe
o O i . .
event 1 2.File execution i% Pl Wil
1.Net access c:’:D '~<

2.File download

1.Net access Sub-block 1
2.Google query

Sub-block 2
Sub-block 3

time

System-level Insider Threat
Specification

The previous definitions are wide in scope.

To construct an automated threat detection/prediction
system, we need to narrow down the observable aspect and
behavioral data.

Only system obtained data are considered at filesystem,
process execution and network connection levels.

System-level Insider Threat
Logging wishlist

We need a standardized way to monitor and deposit user
actions: OS agnostic and log records should have a well
defined format.

Data should be stored away from the monitored host for
security purposes (integrity and availability of log data)

The record format should allow user entity accountability
for each recorded insider action.

System-level Insider monitoring
and Forensics

Should a logging engine complement forensics: Yes. Why?

- The “observer effect”: No need to tamper with
investigation source media [1].

-”Static” data forensic analysis can give a rather
incomplete picture of an incident [1].

-"Dynamic” data forensic analysis (sequence of process
events) can be built more easily in a logging engine
rather than an OS forensic tool [2].

Overview of existing logging
engines

There are many logging engines/frameworks and Security
Event Managers (SEMs) out there. A sample:

- Syslogd[3], WinSyslog[4], RFC 5424

- OpenXDAS [5], Cisco MARSI6]

- Event Data Warehouse [7], Arc Sight Logger 4 [], EDP

Most of these solutions are geared towards network and
application security events and/or data audit compliance.

They do not really address the insider threat detection and
prediction issues to a detailed extent.

LUARM

-Log User Actions in Relational Mode
-Written in Perl for rapid prototyping and Open Source.
-Uses MySQL to store the logs in a simple schema.

-Goal: Provide a prototype log engine for insider misuse
researchers so that they are:
- able to log user actions in detail.
- able to use the logs to replay/study misuse incidents.
- cross reference logged user data to forensic procedures.

Client 2

LUARM architecture

netactivity.pl
fileactivity.pl
psactivity.pl

hwactivity.pl

netactivity.pl
fileactivity.pl
psactivity.pl

hwactivity.pl

Perl DBI

Perl DBI

mysqld
endpointresolver.pl

ITPSL Compiler
and
Client registration
modules

LUARM Client 1
Database

LUARM Client 2
Database

filename

username

=
o

size

cmonth

chour

dyear

dday

dmin

varchar

tinytext

tinytext

bigint

tinyint

tinyint

t

=]

tinyint

tinyint

fileinfo
table

transport

sourcefgdn

destfqdn

destport

cyear

cday

csec

dmonth

dhour

dsec

pid

tinytext

tinytext

tinytext

smallint

int

tinyint

tinytint

tinyint

tinyint

i}
=}
o

Tinyint

int

netinfo

table

ARM relational schema

username

pmem

arguments

cmonth

chour

dyear

dday

dmin

usermame

tinytext

smallint

decimal

mediumtext

tinyint

tinyint

=]
=

tinyint

tinyint

tinytext

psinfo
table

.RM relational schema (2)

groupusers text
mmonth tinyint
mhour tinyint

hwinfo
table

ipversion

subnet

inthame

cmonth

chour

dyear

dday

dmin

tinyint

tinytext

text

tinyint

tinyint

S
—

tinyint

tinyint

netint
table

cyear

int

dsec tinyint

groupinfo

table

LUARM query examples

-Find all accesses of the file 'prototype.ppt' by users 'toms' OR
'georgem' between 9:00 and 14:00 hours on 23/10/2009.

SELECT * FROM fileinfo WHERE filename="prototype.ppt' AND ((username='toms') OR
(username='georgem")) AND cyear='2009' AND cmonth='10' AND cday='23' AND chour >="'9'
AND chour <="'13" AND cmin >="'0" AND cmin >='59';

-Find all USB devices that were physically connected to the
system when users 'toms' OR 'georgem' were logged on 23/10/2009.

SELECT * from hwinfo WHERE devbus='usb' AND ((userslogged RLIKE ‘toms') OR
(userslogged RLIKE 'georgem’)) AND cyear='2009' AND cmonth="'10' AND cday='23' AND chour
>="'9" AND chour <='13" AND cmin >="'0" AND cmin >= '59";

Audience alertness test 1

-What does the following do (hint: psinfo is the process
execution table) and what does the sequence of actions of the
examples specify?

select * FROM psinfo WHERE ((command='cp’) OR (command="mv')) AND
(arguments RLIKE 'prototype.ppt' AND arguments RLIKE ‘'/media’) AND
((username='georgem’) OR (username='toms')) AND cyear="2009' AND cmonth="10'
AND cday="'23"' AND chour >="'9' AND chour <="'13' AND cmin >="'0" AND cmin >=
'59"

LUARM deployment hardware
specs

-MySQL LUARM server:
-4 Gbytes of RAM and 4 processing cores

-Disk space consumption in Gigabytes
D =n x18xd

cons clients archive

Example: 150 clients for 365 days of archiving ~ 1 Tbyte

-Data network: At least 100 Mbits/sec, maximum 20 Kbits/sec
per client.

-LUARM client:
-2 processing cores and up to 300 Megs of RAM
-Up to 30% of a single core on a moderately busy system.

LUARM issues/questions

-SQL is workable but not ideal (clarity, expressive compactness)
for issuing event specific queries.

-How do we assemble queries together (temporal specification ,
correlation of events and combination of misuse and anomaly
detection)?

-How do we increase the '‘polymorphism’ of the event expression
schema?

-How do we relate the recorded events to decision theoretic
information?

Meet ITPSL

-Insider Threat Prediction and Specification Language

-XML Domain Specific Language (DSL) construct made to address the
LUARM issues/questions.

-LUARM collects the data and ITPSL mines the events.
-LUARM also facilitates threat signature repositories. Each signature
specifies a threat scenario together with associated weight

(confidence) data about the threat specifiers.

-Work in progress: Some of the specs mentioned here might change.

ITPSL Header

<itpslheader>
<signid> md5sum (date and second, type of OS, current number of processes) <Isignid>
<signdate>
<year> dddd <lyear> <month> dd </Imonth> <day> dd </day>
</signdate>
<ontology>
<reason> “intentional” | “accidental” </reason>
<revision> d.d </revision>
<user_role> “admins” | “advanced_users” | “ordinary_users” <luser_role>
<detectby> “file” | “exec” | “network” | “multi” </detectby>
<context> detection | prediction </context>

<weightmatrix>n_ </weightmatrix>

eventn

’ ’W ’ mEn
eventl event2

ents

<o0s> “linux” | “windows” | “macosx” | “unix” <los>
<osver> “2.4" | "2.6” | “2000” | “Vista” | “7” <losver>
<threatkeywords> keywordl keyword?2 ... keyword5 </threatkeywords>
[<synopsis> “text that describes the signature’s purpose and function”
</synopsis>]
</ontology>
</itpslheader>

”|“

ITPSL Header (2)

-Signature metadata.
-The ontology is the foundation for the signature taxonomy.

-An event is specified by an ITPSL sub-block (see latter slides)

-The weightmatrix tag facilitates decision theoretic information
representation by means of event confidence weights:

YW = EPMO

eventn

EPTO -> Evaluated Potential Misuse Occurrence (0...1)
n-> number of specified events

ITPSL body

<itpslbody>
<mainblock> k
<mainop> AND | OR | XOR | as_a_result_of |

<subblock>
<subop> AND | OR | XOR | as_a_result_of | si
ITPSL directives

<IsuI;I;Iock>
<subblock>

<subop> AND | OR | XOR | as_a _result_of | single <
ITPSL directives

<IsuI;t.>.Iock>

</mainblock>
</itpslibody>

ITPSL runtime scopes

-Four language runtime scopes:
-Header: Concerns the header data.

-Mainblock: Concerns how the subblock data will be used.

-Subblock: How the ITPSL directives inside a subblock will be
used.

-ITPSL directive: The specified file, network and
process execution events.

-Runtime evaluation/parsing is performed on a bottom-up fashion (LR)
: ITPSL directive->Subblock->Mainblock.

ITPSL 'mainop’ operator

-'mainop’ increases the language expressiveness/specificity for describing groups
of actions (one action per subblock) :

-Marked by the <mainop></mainop> tags.
-Dictates how will the results of subblocks be combined/intepreted:

-AND | ORI XOR: Requires more than one subblock and
combines them in terms of the binary operator (threat detection
plus threat prediction). [9]

-as_a_result_of: Requires more than one subblock and is used to
define a target set of actions (top subblock) and intermediate
earlier stages (definition of abstract temporal sequence for threat
detection plus threat prediction) . [9]

-justone: Requires just one subblock for the description of detecting a
target state (threat detection).

'‘as_a_result_of"
(mainblock scope)

<itpslbody>
<mainblock>
<mainop> as_a result of </mainop>

<subblock>
<subop> OR <Isubop> TARGET (FINAL)
ITPSL directivel ITPSL directive 2 CONDITION
</subblock>
<subblock>
<subop> AND </subop> Middle temporal sequence

ITPSL directivel ITPSL directive 2
</subblock>

<subblock>
<subop> AND </subop> INITIAL CONDITION

ITPSL directivel ITPSL directive 2
</subblock>

</mainblock>
</itpslbody>

ITPSL 'subop’' operator

-'subop’' increases the language expressiveness/specificity for describing groups
of file, network and process execution ITPSL directives within a subblock :

-Marked by the <subop></subop> tags.
-Dictates how will the ITPSL directives inside a subblock will be
combined/intepreted:
-AND ORI XOR INOT: Requires more than one directive and combines
them in terms of the binary operator. [9]
-as_a_result_of: Requires more than one directive in the block and is used
to define a set of directives and intermediate in temporal sequence. [9]
-single: Requires a single directive in the subblock.

'‘as_a_result_of"
(subblock scope)

<itpslbody>
<mainblock>
<mainop> AND </mainop>

<subblock>
<subop> as_a_result_of </subop>

ITPSL directiven TARGET (FINAL) CONDITION
ITPSL directive n-1

i:I.'.PSL directive 1 INITIAL CONDITION
</subblock>

<subblock>

<subop> AND </subop>

ITPSL directivel ITPSL directive 2
</subblock>

</mainblock>
<litpslibody>

The ITPSL directives

-Each ITPSL directive describes a discrete event related to a threat
scenario. They can exist only inside an ITPSL subblock.

-Broadly divided into four categories:
-File directives: Describe various file related events.

-Network directives: Describe the presence of network

endpoints and interfaces.
-Process Execution directives: Express events related to

program execution.
-Hardware operation statements: Detect the addition or
removal of hardware devices on the system.

ITPSL file directives

-File presence: Detect files and dirs now.
-fileexists
-direxists

-File access ability: Examining the ability of users to access files

-usercanaccessfile, usercanaccessdir
-groupcanaccessfile, groupcanaccessdir

-File access: Examining the actual file access

-fileaccess
-diraccess

ITPSL network directives

-Network element detection: Existence of interfaces and

routes now.
-netinterfaceexists
-routeexists

-Network access ability: Can users access endpoints?

-usercanaccessnet
-groupcanaccessnet

-Network access: Checking for actual endpoint access.

-netaccess

ITPSL process execution
directives

-General process execution: Running a program without reference

to a user.
-procexec

-User related process execution: Associate process execution to

users.
-userexec
-groupexec

-In sequence user related process execution: Associate
sequences of process execution steps to users
-userexecsequence
-groupexecsequence

Define the timing of single events
with 'patterns’

- A pattern tag (<pattern></pattern) is used in many ITPSL directives
to bind the event specification to a specific time period or a periodic
occurrence specification (instance specifier) [9]:

<pattern>[AND/OR/XOR/NOT] (specl,spec2,...,specn)</pattern>

Where each 'timespec' can have one of the following forms:

from-now

hh-hh today

hh-hh (x| (0-999)) days ago

[more-than | less-than] x times for the last (minute | hour | day | month | year)
[more than | less-than] x times every (Sunday...Saturday) for the last (month|year)

ITPSL pattern example

<hardwareop>
<operation>device-addition</operation>
<bus>usb</bus>
<deviceidstring> OR (‘MuVo-X', 'MuVo NX',) <Ideviceidstring>

<pattern> 08-17 6 days ago </pattern>
<userwasloggedon> chrisc </luserwasloggedon>
</hardwareop>
Alternative pattern examples:

<pattern> 3 times every Monday for the last month </pattern>

<pattern> more than 3 times for the last hour </pattern>

ITPSL signature polymorphism

-ITPSL directive specification tags employ binary operators:
- “Access on a file that could have a name like “this” OR “that”
AND contents either likes “this” or “that”.
- Use of conjunction (AND), disjunction (OR), exclusive disjunction
(XOR) and negation operator (NOT) simultaneous operator???.
- Signature reuse: repositories and semantics to apply

w3.0rg/2001/XMLSchema-instance"
lon="/home/georgios/E6400backup/giorgos/Research2007/IT

8d02eb6244e40e69 </signid>

<day>2</day>
</signdate>
<ontology>
<reason>intentional</reason>
<revision>1.0</revision>
<user_role>ordinary_users</user_role>
<detectby>multi</detectby>
<context> detection </context>
<weightmatrix>1,1,1,10,20,30,20,10,20</weightmatrix>
<0s>linux</os>
<version>2.6</version>
<threatkeywords> ip theft portable media prototype surveillance </threatkeywords>
<synopsis> “This signature detects the scenario of device prototypes being moved to
USB keys ” </synopsis>
</ontology>
</itpslheader>

ring</groupname>

/name>

in, /usr/sbin) </path>

totype*, schem*, /media,) </argumentlist>
singleprocess>

(prototype,testdesign,schematics)</dirname>
<location> OR (/share/storage/pblk3000/,
/data/storage/prototypes)</location>
<ability>full</ability>
<singledir>yes</singledir>
</groupcanaccessdir>
<hardwareop>
<operation>device-addition</operation>
<bus>usb</bus>
<deviceidstring> NOT ('Creative MuVo-X USB player’, 'MuVo NX', 'USB
Mass Storage') </deviceidstring>
<groupwasloggedon> engineering </groupwasloggedon>
</hardwareop>
</subblock>
</mainblock>
</itpslbody>
</itpslsig>

References

[1] Hay B., Nance K., Bishop M. (2009), “Live Analysis Progress and Challenges”, IEEE Security
& Privacy, Volume 7, Number 2, pages 30-37.

[2] Adelstein F. (2006), “Live Forensics: Diagnosing Your System without Killing it First”,
Comm. ACM, vol.49, no.2, 2006, pages 63-66.

[3] http://en.wikipedia.org/wiki/Syslogd

[4] http://www.winsyslog.com/en/

[5] The OpenGroup's Distributed Audit System: http://openxdas.sourceforge.net/

[6]Cisco's Monitoring and Analysis Report System:
http://www.cisco.com/en/US/products/ps6241/tsd_products_support_reference_guides.html

[7] Event Data Warehouse product: http://www.sensage.com/products/event-data-warehouse.php
[8] Arcsight logger applicance: http://www.arcsight.com/products/products-logger/

[9] Meier M. (2004), “A Model for the Semantics of Attack Signatures in Misuse Detection
Systems”, 7" Information Security Conference, LNCS Volume 3225, Springer, Berlin/Heidelberg,
pp. 158-169 .

http://en.wikipedia.org/wiki/Syslogd
http://www.winsyslog.com/en/
http://openxdas.sourceforge.net/
http://www.cisco.com/en/US/products/ps6241/tsd_products_support_reference_guides.html
http://www.sensage.com/products/event-data-warehouse.php
http://www.arcsight.com/products/products-logger/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

