Large system usage HOW TO

George Magklaras PhD Biotek/NCMM IT USIT Research Computing Services

UiO SUNIVERSITETETS SENTER FOR INFORMASJONSTERNOLOGI

Agenda

- Introduction: A Linux server as a collection of memory/disk/CPU
- What is the problem?
- memory and SWAP space
- What are the limits on biotin?
- The 'htop' application
- An algorithm/procedure to help you not overload the system and get your work done
- Examples

Introduction

- Each server has a certain amount of CPU cores
 - cat /proc/cpuinfo | grep processor | wc -1
- A certain amount of RAM memory
 - free
- And a certain amount of disk space
 - df -h

Introduction (2)

[georgios@biotin ~]\$ cat /proc/cpuinfo | grep processor wc -l 32 [georgios@biotin ~]\$ free buffers total free shared cached used 264514940 202499088 5482912 62015852 Θ 189410216 Mem: -/+ buffers/cache: 7605960 256908980 10485752 Θ 10485752 Swap: [georgios@biotin ~]\$ df -h ilesvstem Size Used Avail Use% Mounted on /dev/mapper/internvg-root 2.0G 727M 1.2G 38% / 127G tmpfs 127G Θ 0% /dev/shm /dev/sda1 99M 380M 21% /boot 504M /dev/mapper/internvg-opt 13G 9.7G 1.8G 85% /opt /dev/mapper/internvg-tmp 180M 60G 1% /tmp 63G /dev/mapper/internvg-usr 63% /usr 23G 14G 39G /dev/mapper/internvg-var 7.9G 1.7G 5.9G 22% /var /dev/mapper/VGpreben-LVpreben 5.4T 3.7T 1.5T 72% /storage/mortharea /dev/mapper/VGmills-LVmills 13T 9.5T 2.5T 80% /storage/millsarea /dev/mapper/VGEMBGalaxy-LVembgalaxy 7.0T 4.7T 2.4T 67% /storage/tools /dev/mapper/VGscratch-LVhurtado 6.0T 4.1T 2.0T 68% /storage/hurtadoarea /dev/mapper/VGscratch-LVscratch 8.6T 1.5T 7.2T 17% /storage/scratch 192.168.8.126:/storage/staerkarea/ 3.0T 2.2T 884G 72% /storage/staerkarea frigg.uio.no:/div/frigg/u6 500G 151G 350G 31% /div/frigg/u6 frigg.uio.no:/div/frigg/u7 500G 173G 327G 35% /div/frigg/u7

What is the problem?

- The most important resource in a shared server is memory.
- We cannot overuse memory, because things will start crashing, affecting people's work.
- If you overuse CPU cores or disk space, this can be to a certain extent tolerable. Not with memory.
- Memory exhaustion crashes have been caused twice in the past. We need to learn how to monitor for memory usage and prevent this from occurring.

Memory and SWAP space

- SWAP is hard disk space that is used to replace RAM.
- When the operating system kernel is running out of RAM (or it considers that certain programs are inactive), it transfers them to swap, until memory becomes available again.
- 'swap' kills performance: hard disk is much slower than RAM.
- When a system uses the SWAP space heavily, things are not optimal and it shows that memory is overused.

Example of heavy SWAP usage

cop - 13:41:43 up 46 days, 1:32, 3 users, load average: 1.27, 1.16, 1.17 Tasks: 1772 total, 2 running, 1759 sleeping, 11 stopped, 0 zombie Cpu(s): 10.4%us, 0.4%sy, 0.0%ni, 89.1%id, 0.1%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 529247244k total, 497745684k used, 31501560k free, 12780k buffers Gwap: 10485752k total, 5242608k used, 5243144k free, 187682484k cached

PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
50058		20	0	293g	288g	1724	R	96.2	57.2	3799:54	bogart
19642	root	20	0	20464	2496	884	R	10.5	0.0	0:00.10	top
1	root	20	0	25684	792	532	S	0.0	0.0	0:53.80	init
2	root	20	0	0	Θ	0	S	0.0	0.0	0:00.60	kthreadd
З	root	RT	0	0	Θ	0	S	0.0	0.0	0:39.75	migration/0
4	root	20	0	0	Θ	0	S	0.0	0.0	1374:58	ksoftirqd/0
5	root	RT	0	0	Θ	0	S	0.0	0.0	0:00.00	migration/0
6	root	RT	0	0	Θ	0	S	0.0	0.0	0:06.82	watchdog/0
7	root	RT	0	0	Θ	0	S	0.0	0.0	0:08.32	migration/1
8	root	RT	0	0	Θ	0	S	0.0	0.0	0:00.00	migration/1
9	root	20	0	0	Θ	0	S	0.0	0.0	286:54.16	ksoftirqd/1
10	root	RT	0	0	Θ	0	S	0.0	0.0	0:03.70	watchdog/1
11	root	RT	0	0	Θ	0	S	0.0	0.0	0:04.69	migration/2
12	root	RT	0	0	0	0	S	0.0	0.0	0:00.00	migration/2
13	root	20	0	0	Θ	0	S	0.0	0.0	287:27.51	ksoftirqd/2

The limits on the biotin server

- Biotin has 256 Gigs of RAM memory.
- We can allocate 150 Gig to run for life science computing.
- The other 106 Gigs we need to run other critical services (VM cluster, file cache, etc)
- This means that amongst <u>ALL of you</u>, you should <u>not</u> exceed 150 Gigs of RAM.
- Cores and dedicated disk space we do not care. Memory we do care about. Limits have been enforced to ensure that failsafes function.

The 'htop' application

24482 tonih	20	0 11.90	6 11.7G	1744 R	100.	4.6 3h02	2:38 python makeCDT_V5_window.py TH74.x.f.bowtie2_sorted_filtered.bed FAIRE_regions_II.cff FAIRE_regionsII_FAIRE_siNT CTR.cdt MCF7 input Oslo sorted.bed
53420 tonih	20	0 9110M	1 8953M	1744 R	100.	3.5 1h00	9:47 python makeCDT V5 window.py TH72.f Bowtie2 sorted filtered ST.bed FAIRE regions III.cff FAIRE regionsIII FAIRE siNT EGF.cdt MCF7 input Oslo sorted.
58727 tonih	20	O 8117№	7987M	1744 R	100.	3.1 33:09	9.54 python makeCDT V5 window.py MCF7PI3K.f sort filtered ST.bed FAIRE regions I.cff FAIRE regionsI ChIP FOXAl PI3K.cdt MCF7 input Oslo sorted.bed hg19 s
58634 tonih	20	0 8776M	18641M	1744 R	100.	3.3 34:02	2.60 python makeCDT_V5_window.py MCF7LAP.f_sort_filtered ST.bed FAIRE_regions_I.cff FAIRE_regionsI_ChIP_F0XA1_LAP.cdt MCF7_input_Oslo_sorted.bed hg19_s1;
51294 tonih	20	0 9101M	8966M	1744 R	100.	3.5 1h11	1:13 python makeCDT_V5_window.py MCF7PI3K.f_sort_filtered_ST.bed FAIRE_regions_II.cff FAIRE_regionsII_ChIP_F0XA1_PI3K.cdt MCF7_input_Oslo_sorted.bed hg19
57906 tonih	20	0 8559	1 8389M	1744 R	100.	3.2 35:44	4.38 python makeCDT_V5_window.py TH70.f_Bowtie2_sorted_filterd_ST.bed FAIRE_regions_I.cff FAIRE_regionsI_FAIRE_sINT_Heregulin.cdt MCF7_input_Oslo_sorted
53154 tonih	20	0 10.20	5 10.1G	1744 R	100.	4.0 1h 03	3:14 python makeCDT_V5_window.py MCF7LAP.f_sort_filtered_ST.bed FAIRE_regions_III.cff FAIRE_regionsIII_ChIP_F0XA1_LAP.cdt MCF7_input_Oslo_sorted.bed hg1
24550 tonih	20	0 11.90	5 11.8G	1744 R	100.	4.7 3h02	2:17 python makeCDT_V5_window.py TH70.f_Bowtie2_sorted_filterd_ST.bed FAIRE_regions_II.cff FAIRE_regionsII_FAIRE_siNT_Heregulin.cdt MCF7_input_Oslo_sort@
52221 tonih	20	0 9413M	1 9252M	1744 R	100.	3.6 1h06	6:44 python makeCDT_V5_window.py TH74.x.f.bowtie2_sorted_filtered.bed FAIRE_regions_III.cff FAIRE_regionsIII_FAIRE_siNT_CTR.cdt MCF7_input_Oslo_sorted.be
53311 tonih	20	0 10200	M 10058	M 1744	R 100.	. 3.9 <mark>1</mark> h	N01:47 python makeCDT_V5_window.py MCF7PI3K.f_sort_filtered_ST.bed FAIRE_regions_III.cff FAIRE_regionsIII_ChIP_F0XA1_PI3K.cdt MCF7_input_Oslo_sorted.bed
58839 tonih	20	0 7346	1 7197M	1744 R	100.	2.8 31:58	3.50 python makeCDT_V5_window.py TH72.f_Bowtie2_sorted_filtered_ST.bed FAIRE_regions_I.cff FAIRE_regionsI_FAIRE_siNT_EGF.cdt MCF7_input_Oslo_sorted.bed H
58001 tonih	20	0 8920	1 8784M	1744 R	100.	3.4 34:45	5.32 python makeCDT_V5_window.py MCF7CTR.f_sort_filtered_ST.bed FAIRE_regions_I.cff FAIRE_regionsI_ChIP_F0XA1_CTR.cdt MCF7_input_Oslo_sorted.bed hg19_si:
52376 tonih	20	0 10.00	10108M	1744 R	100.	3.9 1h0	35:30 python makeCDT_V5_window.py TH70.f_Bowtie2_sorted_filterd_ST.bed FAIRE_regions_III.cff FAIRE_regionsIII_FAIRE_siNT_Heregulin.cdt MCF7_input_Oslo_sc
53061 tonih	20	0 10.40	i 10.3G	1744 R	100.	4.1 1h 03	3:58 python makeCDT_V5_window.py MCF7CTR.f_sort_filtered_ST.bed FAIRE_regions_III.cff FAIRE_regionsIII_ChIP_F0XA1_CTR.cdt MCF7_input_Oslo_sorted.bed hg1
51423 tonih	20	0 8403№	1 8249M	1744 R	100.	3.2 1h09	9:13 python makeCDT_V5_window.py TH72.f_Bowtie2_sorted_filtered_ST.bed FAIRE_regions_II.cff FAIRE_regionsII_FAIRE_siNT_EGF.cdt MCF7_input_Oslo_sorted.bec
24789 tonih	20	0 12.00	5 11.9G	1744 R	99.0	4.7 2h59	9:38 python makeCDT_V5_window.py MCF7LAP.f_sort_filtered_ST.bed FAIRE_regions_II.cff FAIRE_regionsII_ChIP_F0XA1_LAP.cdt MCF7_input_Oslo_sorted.bed hg19_s
24552 tonih	20	0 15.90	5 14.8G	1748 R	99.0	5.9 3h02	2:10 python makeCDT_V5_window.py MCF7CTR.f_sort_filtered_ST.bed FAIRE_regions_II.cff_FAIRE_regionsII_ChIP_F0XA1_CTR.cdt MCF7_input_0slo_sorted.bed hg19_s
57786 tonih	20	0 7492	7339M	1744 R	98.0	2.8 36:36	5.78 python makeCDT_V5_window.py TH74.x.f.bowtie2_sorted_filtered.bed FAIRE_regions_I.cff FAIRE_regionsI_FAIRE_siNT_CTR.cdt MCF7_input_Oslo_sorted.bed hg
13500 tonih	20	0 110M	2156	1164 S	0.0	0.0 0:00	9.04 sshd: tonih@pts/1
13501 tonih	20	0 120	2212	1624 S	0.0	0.0 0:00	
13753 tonih	20	0 110	2160	1164 S	0.0	0.0 0:00	0.01 sshd: tonih@pts/17
13754 tonih	20	0 120	2172	1596 S	0.0	0.0 0:00	0.05 -bash
14082 tonih	20	0 110	2156	1160 S	0.0	0.0 0:00	0.01 sshd: tonih@pts/19
14083 tonih	20	0 120	2180	1600 S	0.0	0.0 0:00	0.06 - bash
14398 tonih	20	0 110	2152	1160 S	0.0	0.0 0:00	9.06 sshd: tonih@pts/20
14399 tonih	20	0 120	21/6	1600 S	0.0	0.0 0:00	
50969 tonin	20	0 110	2160	1164 5	0.0	0.0 0:00	5.07 sshal toningts/21
50973 tonih	20	0 120		1620 5	0.0	0.0 0:00	
51370 tonin	20	0 100	2150	1104 5	0.0	0.0 0:00	
513/1 LONIN	20	0 120	2190	1010 5	0.0	0.0 0.00	
DZIID LONIN	20	0 120	2100	1104 5	0.0	0.0 0.00	
52110 LUNIIN 52257 tonih	20	0 110	2104	1164 0	0.0	0.0 0.00	
52257 LONLIN 52250 tonib	20	0 120	2150	1502 C	0.0	0.0 0.00	
52256 tonih	20	0 110	2100	1164 C	0.0	0.0 0.00	usi 04 codd: tanibastc/26
52394 tonib	20	0 120	2160	1592 5	0.0	0.0 0.00	
53072 tonih	20	0 1100	2100	1164 S	0.0	0.0 0.00	0.03 sshd: tonih@nts/27
53072 tonih	20	0 120	2150	1592 S	0.0	0.0 0.00	
=1Help F2Setu	ID F3See	archF4Eil	ter <mark>E5</mark> Tr	F6So	rt ByE7	Nice - E8N	Vice #E9Kills E10Duit

The 'htop' application (2)

- In the previous slide, if we add all the numbers under the 'RES' column for user 'tonih', we get approx 150 Gigs of RAM in total.
- And that was for a single user, which would be OK if nobody else was running on the system.
- Difference: htop versus htop -u [username]
- You have to account for others that might be executing programs at the same time as you.

An algorithm/procedure to regulate memory consumption

- **<u>Before</u>** you execute your heavy programs on biotin:
 - 1)Run htop and locate the Mem horizontal line which measures actual RAM consumption.
 - 2)If the amount of RAM >= 150 Gigs (153600 MB), please wait until it comes well under 100 Gigs.
 - 3)If the amount of RAM < 150 Gigs(153600 MB), you can consume

150 Gigs - [current_consumption_by others]

for all your processes to share.

- How to gauge your current memory consumption:
 - Run 'htop -u [your_userid]' and ADD UP all the figures under the RES column. This is how much you are currently using on the system.

Example 1:

1 []]	4.5%	9 [0.0%
2	0.0%	10	0.0%
3 [0.0%	11 [0.0%
4	0.0%	12	0.0%
5	0.0%	13	0.0%
6	0.0%	14	0.0%
7 [$0.0^{\circ_{5}}$	15	0.0%
8	0.0%	16	0.0%
Mem[44275/258315MB
Swp			0/10239MB

The current memory consumption on 'biotin' is approximately 44 Gigs (44275). How many 'novoalign' processes can I start at the same time, without overloading the system?

<u>Solution</u>: If I know that a single novoalign process can take up to 12 Gigs of RAM (depended on the parameters and my data set), I have 150 - 44 = 106 Gigabytes. Which means I can start a max of 8 of them (106/12 -> rounded to the lower integer).

Example 2:

1 2 3 4 5 6 7 8 Mem Swp								4.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	5] 5] 5] 5] 5] 5] 5]	9 [10 [11 [12 [13 [14 [15 [16 [0.0% 0.0% 0.0% 0.0% 0.6% 0.0% 0.0% 0.0%
PID	USER	PRI	NI	VIRT	RES	SHR	S	CPU%	MEMS	TIME+	Command	
5816	georgios	20	0	40.0G	19.5G	484	R	100.	7.7	0:38.34	memhog 40G	
5808 5810	georgios georgios	20 20	0 0	40.0G 40.0G	22.8G 20.7G	484 484	R	100. 100.	9.1 8.2	0:41.78 0:40.64	memhog 40G memhog 40G	

The current memory consumption on 'biotin' is 70 Gigs (71703 MB). User georgios seems to be running these large processes that keep growing in size. How many Python make_CDT_window_V5.py scripts can I safely start without overloading the system.

<u>Solution</u>: If I know that a single script of that type can take up to 15 Gigs of RAM (depended on the parameters and my data set), I should have 150 - 70 = 80 Gigabytes. However, because I see user georgios acquiring RAM rapidly, I look at the VIRT column and I consider this as the maximum amount of RAM-> 120 Gigs (3 x 40 Gigs). Therefore, I have 150-120=30 Gigs, thus only 2 of these Python scripts could be started safely, given the current circumstances.

Questions?

